580 research outputs found

    Artificial intelligence models for refrigeration, air conditioning and heat pump systems

    Get PDF
    Artificial intelligence (AI) models for refrigeration, heat pumps, and air conditioners have emerged in recent decades. The universal approximation accuracy and prediction performances of various AI structures like feedforward neural networks, radial basis function neural networks, adaptive neuro�fuzzy inference and recurrent neural networks are encouraging interest. This review discusses existing topographies of neural network models for RHVAC system modelling, energy prediction and fault(s), and detection and diagnosis. Studies show that AI structures require standardization and improvement for tuning hyperparameters (like weight, bias, activation functions, number of hidden layers and neurons). The selection of activation functions, validation, and learning algorithms depends on author’s suitability for a particular application. Backpropagation, error trial selection of the number of hidden layer, and hidden layers’ neurons, and Levenberg–Marquardt learning algorithms, remain prevalent methodologies for developing AI structures. The major limitations to the application of AI models in RHVAC systems include exploding or/and vanishing gradients, interpretability, and accuracy trade off, and training saturation and limited sensitivity. This review aims to give up-to-date applications of different AI architectures in RHVAC systems and to identify the associated limitations and prospect

    Deep Recurrent Learning for Efficient Image Recognition Using Small Data

    Get PDF
    Recognition is fundamental yet open and challenging problem in computer vision. Recognition involves the detection and interpretation of complex shapes of objects or persons from previous encounters or knowledge. Biological systems are considered as the most powerful, robust and generalized recognition models. The recent success of learning based mathematical models known as artificial neural networks, especially deep neural networks, have propelled researchers to utilize such architectures for developing bio-inspired computational recognition models. However, the computational complexity of these models increases proportionally to the challenges posed by the recognition problem, and more importantly, these models require a large amount of data for successful learning. Additionally, the feedforward-based hierarchical models do not exploit another important biological learning paradigm, known as recurrency, which ubiquitously exists in the biological visual system and has been shown to be quite crucial for recognition. Consequently, this work aims to develop novel biologically relevant deep recurrent learning models for robust recognition using limited training data. First, we design an efficient deep simultaneous recurrent network (DSRN) architecture for solving several challenging image recognition tasks. The use of simultaneous recurrency in the proposed model improves the recognition performance and offers reduced computational complexity compared to the existing hierarchical deep learning models. Moreover, the DSRN architecture inherently learns meaningful representations of data during the training process which is essential to achieve superior recognition performance. However, probabilistic models such as deep generative models are particularly adept at learning representations directly from unlabeled input data. Accordingly, we show the generalization of the proposed deep simultaneous recurrency concept by developing a probabilistic deep simultaneous recurrent belief network (DSRBN) architecture which is more efficient in learning the underlying representation of the data compared to the state-of-the-art generative models. Finally, we propose a deep recurrent learning framework for solving the image recognition task using small data. We incorporate Bayesian statistics to the DSRBN generative model to propose a deep recurrent generative Bayesian model that addresses the challenge of learning from a small amount of data. Our findings suggest that the proposed deep recurrent Bayesian framework demonstrates better image recognition performance compared to the state-of-the-art models in a small data learning scenario. In conclusion, this dissertation proposes novel deep recurrent learning pipelines, which utilize not only limited training data to achieve improved image recognition performance but also require significantly reduced training parameters

    Deep Learning for Recommender Systems

    Get PDF
    The widespread adoption of the Internet has led to an explosion in the number of choices available to consumers. Users begin to expect personalized content in modern E-commerce, entertainment and social media platforms. Recommender Systems (RS) provide a critical solution to this problem by maintaining user engagement and satisfaction with personalized content. Traditional RS techniques are often linear limiting the expressivity required to model complex user-item interactions and require extensive handcrafted features from domain experts. Deep learning demonstrated significant breakthroughs in solving problems that have alluded the artificial intelligence community for many years advancing state-of-the-art results in domains such as computer vision and natural language processing. The recommender domain consists of heterogeneous and semantically rich data such as unstructured text (e.g. product descriptions), categorical attributes (e.g. genre of a movie), and user-item feedback (e.g. purchases). Deep learning can automatically capture the intricate structure of user preferences by encoding learned feature representations from high dimensional data. In this thesis, we explore five novel applications of deep learning-based techniques to address top-n recommendation. First, we propose Collaborative Memory Network, which unifies the strengths of the latent factor model and neighborhood-based methods inspired by Memory Networks to address collaborative filtering with implicit feedback. Second, we propose Neural Semantic Personalized Ranking, a novel probabilistic generative modeling approach to integrate deep neural network with pairwise ranking for the item cold-start problem. Third, we propose Attentive Contextual Denoising Autoencoder augmented with a context-driven attention mechanism to integrate arbitrary user and item attributes. Fourth, we propose a flexible encoder-decoder architecture called Neural Citation Network, embodying a powerful max time delay neural network encoder augmented with an attention mechanism and author networks to address context-aware citation recommendation. Finally, we propose a generic framework to perform conversational movie recommendations which leverages transfer learning to infer user preferences from natural language. Comprehensive experiments validate the effectiveness of all five proposed models against competitive baseline methods and demonstrate the successful adaptation of deep learning-based techniques to the recommendation domain
    • …
    corecore