3 research outputs found

    Earth Resources: A continuing bibliography with indexes, issue 40

    Get PDF
    This bibliography lists 423 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1983. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    Computational mechanisms for colour and lightness constancy

    Get PDF
    Attributes of colour images have been found which allow colour and lightness constancy to be computed without prior knowledge of the illumination, even in complex scenes with three -dimensional objects and multiple light sources of different colours. The ratio of surface reflectance colour can be immediately determined between any two image points, however distant. It is possible to determine the number of spectrally independent light sources, and to isolate the effect of each. Reflectance edges across which the illumination remains constant can be correctly identified.In a scene illuminated by multiple distant point sources of distinguishalbe colours, the spatial angle between the sources and their brightness ratios can be computed from the image alone. If there are three or more sources then reflectance constancy is immediately possible without use of additional knowledge.The results are an extension of Edwin Land's Retinex algorithm. They account for previously unexplained data such as Gilchrist's veiling luminances and his single- colour rooms.The validity of the algorithms has been demonstrated by implementing them in a series of computer programs. The computational methods do not follow the edge or region finding paradigms of previous vision mechanisms. Although the new reflectance constancy cues occur in all normal scenes, it is likely that human vision makes use of only some of them.In a colour image all the pixels of a single surface colour lie in a single structure in flux space. The dimension of the structure equals the number of illumination colours. The reflectance ratio between two regions is determined by the transformation between their structures. Parallel tracing of edge pairs in their respective structures identifies an edge of constant illumination, and gives the lightness ratio of each such edge. Enhanced noise reduction techniques for colour pictures follow from the natural constraints on the flux structures

    Segmentation of neuroanatomy in magnetic resonance images

    Get PDF
    Segmentation in neurological Magnetic Resonance Imaging (MRI) is necessary for volume measurement, feature extraction and for the three-dimensional display of neuroanatomy. This thesis proposes several automated and semi-automated methods which offer considerable advantages over manual methods because of their lack of subjectivity, their data reduction capabilities, and the time savings they give. Work has concentrated on the use of dual echo multi-slice spin-echo data sets in order to take advantage of the intrinsically multi-parametric nature of MRI. Such data is widely acquired clinically and segmentation therefore does not require additional scans. The literature has been reviewed. Factors affecting image non-uniformity for a modem 1.5 Tesla imager have been investigated. These investigations demonstrate that a robust, fast, automatic three-dimensional non-uniformity correction may be applied to data as a pre-processing step. The merit of using an anisotropic smoothing method for noisy data has been demonstrated. Several approaches to neurological MRI segmentation have been developed. Edge-based processing is used to identify the skin (the major outer contour) and the eyes. Edge-focusing, two threshold based techniques and a fast radial CSF identification approach are proposed to identify the intracranial region contour in each slice of the data set. Once isolated, the intracranial region is further processed to identify CSF, and, depending upon the MRI pulse sequence used, the brain itself may be sub-divided into grey matter and white matter using semiautomatic contrast enhancement and clustering methods. The segmentation of Multiple Sclerosis (MS) plaques has also been considered. The utility of the stack, a data driven multi-resolution approach to segmentation, has been investigated, and several improvements to the method suggested. The factors affecting the intrinsic accuracy of neurological volume measurement in MRI have been studied and their magnitudes determined for spin-echo imaging. Geometric distortion - both object dependent and object independent - has been considered, as well as slice warp, slice profile, slice position and the partial volume effect. Finally, the accuracy of the approaches to segmentation developed in this thesis have been evaluated. Intracranial volume measurements are within 5% of expert observers' measurements, white matter volumes within 10%, and CSF volumes consistently lower than the expert observers' measurements due to the observers' inability to take the partial volume effect into account
    corecore