9,955 research outputs found

    Automatic 3D facial modelling with deformable models.

    Get PDF
    Facial modelling and animation has been an active research subject in computer graphics since the 1970s. Due to extremely complex biomechanical structures of human faces and peoples visual familiarity with human faces, modelling and animating realistic human faces is still one of greatest challenges in computer graphics. Since we are so familiar with human faces and very sensitive to unnatural subtle changes in human faces, it usually requires a tremendous amount of artistry and manual work to create a convincing facial model and animation. There is a clear need of developing automatic techniques for facial modelling in order to reduce manual labouring. In order to obtain a realistic facial model of an individual, it is now common to make use of 3D scanners to capture range scans from the individual and then fit a template to the range scans. However, most existing template-fitting methods require manually selected landmarks to warp the template to the range scans. It would be tedious to select landmarks by hand over a large set of range scans. Another way to reduce repeated work is synthesis by reusing existing data. One example is expression cloning, which copies facial expression from one face to another instead of creating them from scratch. This aim of this study is to develop a fully automatic framework for template-based facial modelling, facial expression transferring and facial expression tracking from range scans. In this thesis, the author developed an extension of the iterative closest points (ICP) algorithm, which is able to match a template with range scans in different scales, and a deformable model, which can be used to recover the shapes of range scans and to establish correspondences between facial models. With the registration method and the deformable model, the author proposed a fully automatic approach to reconstructing facial models and textures from range scans without re-quiring any manual interventions. In order to reuse existing data for facial modelling, the author formulated and solved the problem of facial expression transferring in the framework of discrete differential geometry. The author also applied his methods to face tracking for 4D range scans. The results demonstrated the robustness of the registration method and the capabilities of the deformable model. A number of possible directions for future work were pointed out

    Automatic 3D facial model and texture reconstruction from range scans

    Get PDF
    This paper presents a fully automatic approach to fitting a generic facial model to detailed range scans of human faces to reconstruct 3D facial models and textures with no manual intervention (such as specifying landmarks). A Scaling Iterative Closest Points (SICP) algorithm is introduced to compute the optimal rigid registrations between the generic model and the range scans with different sizes. And then a new template-fitting method, formulated in an optmization framework of minimizing the physically based elastic energy derived from thin shells, faithfully reconstructs the surfaces and the textures from the range scans and yields dense point correspondences across the reconstructed facial models. Finally, we demonstrate a facial expression transfer method to clone facial expressions from the generic model onto the reconstructed facial models by using the deformation transfer technique

    Fast Face-swap Using Convolutional Neural Networks

    Get PDF
    We consider the problem of face swapping in images, where an input identity is transformed into a target identity while preserving pose, facial expression, and lighting. To perform this mapping, we use convolutional neural networks trained to capture the appearance of the target identity from an unstructured collection of his/her photographs.This approach is enabled by framing the face swapping problem in terms of style transfer, where the goal is to render an image in the style of another one. Building on recent advances in this area, we devise a new loss function that enables the network to produce highly photorealistic results. By combining neural networks with simple pre- and post-processing steps, we aim at making face swap work in real-time with no input from the user

    Linear Facial Expression Transfer With Active Appearance Models

    Get PDF
    The issue of transferring facial expressions from one person's face to another's has been an area of interest for the movie industry and the computer graphics community for quite some time. In recent years, with the proliferation of online image and video collections and web applications, such as Google Street View, the question of preserving privacy through face de-identification has gained interest in the computer vision community. In this paper, we focus on the problem of real-time dynamic facial expression transfer using an Active Appearance Model framework. We provide a theoretical foundation for a generalisation of two well-known expression transfer methods and demonstrate the improved visual quality of the proposed linear extrapolation transfer method on examples of face swapping and expression transfer using the AVOZES data corpus. Realistic talking faces can be generated in real-time at low computational cost

    Investigating facial animation production through artistic inquiry

    Get PDF
    Studies into dynamic facial expressions tend to make use of experimental methods based on objectively manipulated stimuli. New techniques for displaying increasingly realistic facial movement and methods of measuring observer responses are typical of computer animation and psychology facial expression research. However, few projects focus on the artistic nature of performance production. Instead, most concentrate on the naturalistic appearance of posed or acted expressions. In this paper, the authors discuss a method for exploring the creative process of emotional facial expression animation, and ask whether anything can be learned about authentic dynamic expressions through artistic inquiry

    Considerations for believable emotional facial expression animation

    Get PDF
    Facial expressions can be used to communicate emotional states through the use of universal signifiers within key regions of the face. Psychology research has identified what these signifiers are and how different combinations and variations can be interpreted. Research into expressions has informed animation practice, but as yet very little is known about the movement within and between emotional expressions. A better understanding of sequence, timing, and duration could better inform the production of believable animation. This paper introduces the idea of expression choreography, and how tests of observer perception might enhance our understanding of moving emotional expressions
    • …
    corecore