9,345 research outputs found

    On Computing the Maximum Parsimony Score of a Phylogenetic Network

    Get PDF
    Phylogenetic networks are used to display the relationship of different species whose evolution is not treelike, which is the case, for instance, in the presence of hybridization events or horizontal gene transfers. Tree inference methods such as Maximum Parsimony need to be modified in order to be applicable to networks. In this paper, we discuss two different definitions of Maximum Parsimony on networks, "hardwired" and "softwired", and examine the complexity of computing them given a network topology and a character. By exploiting a link with the problem Multicut, we show that computing the hardwired parsimony score for 2-state characters is polynomial-time solvable, while for characters with more states this problem becomes NP-hard but is still approximable and fixed parameter tractable in the parsimony score. On the other hand we show that, for the softwired definition, obtaining even weak approximation guarantees is already difficult for binary characters and restricted network topologies, and fixed-parameter tractable algorithms in the parsimony score are unlikely. On the positive side we show that computing the softwired parsimony score is fixed-parameter tractable in the level of the network, a natural parameter describing how tangled reticulate activity is in the network. Finally, we show that both the hardwired and softwired parsimony score can be computed efficiently using Integer Linear Programming. The software has been made freely available

    Computing Bounds on Network Capacity Regions as a Polytope Reconstruction Problem

    Get PDF
    We define a notion of network capacity region of networks that generalizes the notion of network capacity defined by Cannons et al. and prove its notable properties such as closedness, boundedness and convexity when the finite field is fixed. We show that the network routing capacity region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. We define the semi-network linear coding capacity region, with respect to a fixed finite field, that inner bounds the corresponding network linear coding capacity region, show that it is a computable rational polytope, and provide exact algorithms and approximation heuristics. We show connections between computing these regions and a polytope reconstruction problem and some combinatorial optimization problems, such as the minimum cost directed Steiner tree problem. We provide an example to illustrate our results. The algorithms are not necessarily polynomial-time.Comment: Appeared in the 2011 IEEE International Symposium on Information Theory, 5 pages, 1 figur

    Parallel Metric Tree Embedding based on an Algebraic View on Moore-Bellman-Ford

    Full text link
    A \emph{metric tree embedding} of expected \emph{stretch~α1\alpha \geq 1} maps a weighted nn-node graph G=(V,E,ω)G = (V, E, \omega) to a weighted tree T=(VT,ET,ωT)T = (V_T, E_T, \omega_T) with VVTV \subseteq V_T such that, for all v,wVv,w \in V, dist(v,w,G)dist(v,w,T)\operatorname{dist}(v, w, G) \leq \operatorname{dist}(v, w, T) and operatornameE[dist(v,w,T)]αdist(v,w,G)operatorname{E}[\operatorname{dist}(v, w, T)] \leq \alpha \operatorname{dist}(v, w, G). Such embeddings are highly useful for designing fast approximation algorithms, as many hard problems are easy to solve on tree instances. However, to date the best parallel (polylogn)(\operatorname{polylog} n)-depth algorithm that achieves an asymptotically optimal expected stretch of αO(logn)\alpha \in \operatorname{O}(\log n) requires Ω(n2)\operatorname{\Omega}(n^2) work and a metric as input. In this paper, we show how to achieve the same guarantees using polylogn\operatorname{polylog} n depth and O~(m1+ϵ)\operatorname{\tilde{O}}(m^{1+\epsilon}) work, where m=Em = |E| and ϵ>0\epsilon > 0 is an arbitrarily small constant. Moreover, one may further reduce the work to O~(m+n1+ϵ)\operatorname{\tilde{O}}(m + n^{1+\epsilon}) at the expense of increasing the expected stretch to O(ϵ1logn)\operatorname{O}(\epsilon^{-1} \log n). Our main tool in deriving these parallel algorithms is an algebraic characterization of a generalization of the classic Moore-Bellman-Ford algorithm. We consider this framework, which subsumes a variety of previous "Moore-Bellman-Ford-like" algorithms, to be of independent interest and discuss it in depth. In our tree embedding algorithm, we leverage it for providing efficient query access to an approximate metric that allows sampling the tree using polylogn\operatorname{polylog} n depth and O~(m)\operatorname{\tilde{O}}(m) work. We illustrate the generality and versatility of our techniques by various examples and a number of additional results
    corecore