14 research outputs found

    A DSATUR-based algorithm for the Equitable Coloring Problem

    Get PDF
    This paper describes a new exact algorithm for the Equitable Coloring Problem, a coloring problem where the sizes of two arbitrary color classes differ in at most one unit. Based on the well known DSatur algorithm for the classic Coloring Problem, a pruning criterion arising from equity constraints is proposed and analyzed. The good performance of the algorithm is shown through computational experiments over random and benchmark instances.Fil: Méndez-Díaz, Isabel. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; ArgentinaFil: Nasini, Graciela Leonor. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Severin, Daniel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura; Argentin

    A tabu search heuristic for the Equitable Coloring Problem

    Get PDF
    The Equitable Coloring Problem is a variant of the Graph Coloring Problem where the sizes of two arbitrary color classes differ in at most one unit. This additional condition, called equity constraints, arises naturally in several applications. Due to the hardness of the problem, current exact algorithms can not solve large-sized instances. Such instances must be addressed only via heuristic methods. In this paper we present a tabu search heuristic for the Equitable Coloring Problem. This algorithm is an adaptation of the dynamic TabuCol version of Galinier and Hao. In order to satisfy equity constraints, new local search criteria are given. Computational experiments are carried out in order to find the best combination of parameters involved in the dynamic tenure of the heuristic. Finally, we show the good performance of our heuristic over known benchmark instances

    A Branch and Price Algorithm for List Coloring Problem

    Get PDF
    Coloring problems in graphs have been used to model a wide range of real applications. In particular, the List Coloring Problem generalizes the well-known Graph Coloring Problem for which many exact algorithms have been developed. In this work, we present a Branch-and-Price algorithm for the weighted version of the List Coloring Problem, based on the one developed by Mehrotra and Trick (1996) for the Graph Coloring Problem. This version considers non-negative weights associated to each color and it is required to assign a color to each vertex from predetermined lists in such a way the sum of weights of the assigned colors is minimum. Computational experiments show the good performance of our approach, being able to comfortably solve instances whose graphs have up to seventy vertices. These experiences also bring out that the hardness of the instances of the List Coloring Problem does not seem to depend only on quantitative parameters such as the size of the graph, its density, and the size of list of colors, but also on the distribution of colors present in the lists.Fil: Lucci, Mauro. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; ArgentinaFil: Nasini, Graciela Leonor. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Severin, Daniel Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas Ingeniería y Agrimensura. Escuela de Ciencias Exactas y Naturales. Departamento de Matemática; Argentina10th Latin and American Algorithms, Graphs and Optimization Symposium (LAGOS 2019)Belo HorizonteBrasilCoordenação de Aperfeiçoamento de Pessoal de Nivel SuperiorConselho Nacional de Desenvolvimento Científico e Técnologico do BrasilUniversidade Federal de Minas Gerai

    An analysis between different algorithms for the graph vertex coloring problem

    Get PDF
    This research focuses on an analysis of different algorithms for the graph vertex coloring problem. Some approaches to solving the problem are discussed. Moreover, some studies for the problem and several methods for its solution are analyzed as well. An exact algorithm (using the backtracking method) is presented. The complexity analysis of the algorithm is discussed. Determining the average execution time of the exact algorithm is consistent with the multitasking mode of the operating system. This algorithm generates optimal solutions for all studied graphs. In addition, two heuristic algorithms for solving the graph vertex coloring problem are used as well. The results show that the exact algorithm can be used to solve the graph vertex coloring problem for small graphs with 30-35 vertices. For half of the graphs, all three algorithms have found the optimal solutions. The suboptimal solutions generated by the approximate algorithms are identical in terms of the number of colors needed to color the corresponding graphs. The results show that the linear increase in the number of vertices and edges of the analyzed graphs causes a linear increase in the number of colors needed to color these graphs

    On the application of graph colouring techniques in round-robin sports scheduling

    Get PDF
    The purpose of this paper is twofold. First, it explores the issue of producing valid, compact round-robin sports schedules by considering the problem as one of graph colouring. Using this model, which can also be extended to incorporate additional constraints, the difficulty of such problems is then gauged by considering the performance of a number of different graph colouring algorithms. Second, neighbourhood operators are then proposed that can be derived from the underlying graph colouring model and, in an example application, we show how these operators can be used in conjunction with multi-objective optimisation techniques to produce high-quality solutions to a real-world sports league scheduling problem encountered at the Welsh Rugby Union in Cardiff, Wales
    corecore