13,257 research outputs found

    Entering the blackboard jungle: canonical dysfunction in conscious machines

    Get PDF
    The central paradigm of Artificial Intelligence is rapidly shifting toward biological models for both robotic devices and systems performing such critical tasks as network management and process control. Here we apply recent mathematical analysis of the necessary conditions for consciousness in humans in an attempt to gain some understanding of the likely canonical failure modes inherent to a broad class of global workspace/blackboard machines designed to emulate biological functions. Similar problems are likely to confront other possible architectures, although their mathematical description may be far less straightforward

    New mathematical foundations for AI and Alife: Are the necessary conditions for animal consciousness sufficient for the design of intelligent machines?

    Get PDF
    Rodney Brooks' call for 'new mathematics' to revitalize the disciplines of artificial intelligence and artificial life can be answered by adaptation of what Adams has called 'the informational turn in philosophy' and by the novel perspectives that program gives into empirical studies of animal cognition and consciousness. Going backward from the necessary conditions communication theory imposes on cognition and consciousness to sufficient conditions for machine design is, however, an extraordinarily difficult engineering task. The most likely use of the first generations of conscious machines will be to model the various forms of psychopathology, since we have little or no understanding of how consciousness is stabilized in humans or other animals

    Decision support continuum paradigm for cardiovascular disease: Towards personalized predictive models

    Get PDF
    Clinical decision making is a ubiquitous and frequent task physicians make in their daily clinical practice. Conventionally, physicians adopt a cognitive predictive modelling process (i.e. knowledge and experience learnt from past lecture, research, literature, patients, etc.) for anticipating or ascertaining clinical problems based on clinical risk factors that they deemed to be most salient. However, with the inundation of health data and the confounding characteristics of diseases, more effective clinical prediction approaches are required to address these challenges. Approximately a few century ago, the first major transformation of medical practice took place as science-based approaches emerged with compelling results. Now, in the 21st century, new advances in science will once again transform healthcare. Data science has been postulated as an important component in this healthcare reform and has received escalating interests for its potential for ‘personalizing’ medicine. The key advantages of having personalized medicine include, but not limited to, (1) more effective methods for disease prevention, management and treatment, (2) improved accuracy for clinical diagnosis and prognosis, (3) provide patient-oriented personal health plan, and (4) cost containment. In view of the paramount importance of personalized predictive models, this thesis proposes 2 novel learning algorithms (i.e. an immune-inspired algorithm called the Evolutionary Data-Conscious Artificial Immune Recognition System, and a neural-inspired algorithm called the Artificial Neural Cell System for classification) and 3 continuum-based paradigms (i.e. biological, time and age continuum) for enhancing clinical prediction. Cardiovascular disease has been selected as the disease under investigation as it is an epidemic and major health concern in today’s world. We believe that our work has a meaningful and significant impact to the development of future healthcare system and we look forward to the wide adoption of advanced medical technologies by all care centres in the near future.Open Acces

    Institutional Cognition

    Get PDF
    We generalize a recent mathematical analysis of Bernard Baars' model of human consciousness to explore analogous, but far more complicated, phenomena of institutional cognition. Individual consciousness is limited to a single, tunable, giant component of interacting cogntivie modules, instantiating a Global Workspace. Human institutions, by contrast, seem able to multitask, supporting several such giant components simultaneously, although their behavior remains constrained to a topology generated by cultural context and by the path-dependence inherent to organizational history. Surprisingly, such multitasking, while clearly limiting the phenomenon of inattentional blindness, does not eliminate it. This suggests that organizations (or machines) explicitly designed along these principles, while highly efficient at certain sets of tasks, would still be subject to analogs of the subtle failure patterns explored in Wallace (2005b, 2006). We compare and contrast our results with recent work on collective efficacy and collective consciousness

    Machine Hyperconsciousness

    Get PDF
    Individual animal consciousness appears limited to a single giant component of interacting cognitive modules, instantiating a shifting, highly tunable, Global Workspace. Human institutions, by contrast, can support several, often many, such giant components simultaneously, although they generally function far more slowly than the minds of the individuals who compose them. Machines having multiple global workspaces -- hyperconscious machines -- should, however, be able to operate at the few hundred milliseconds characteistic of individual consciousness. Such multitasking -- machine or institutional -- while clearly limiting the phenomenon of inattentional blindness, does not eliminate it, and introduces characteristic failure modes involving the distortion of information sent between global workspaces. This suggests that machines explicitly designed along these principles, while highly efficient at certain sets of tasks, remain subject to canonical and idiosyncratic failure patterns analogous to, but more complicated than, those explored in Wallace (2006a). By contrast, institutions, facing similar challenges, are usually deeply embedded in a highly stabilizing cultural matrix of law, custom, and tradition which has evolved over many centuries. Parallel development of analogous engineering strategies, directed toward ensuring an 'ethical' device, would seem requisite to the sucessful application of any form of hyperconscious machine technology

    A modular network treatment of Baars' Global Workspace consciousness model

    Get PDF
    Network theory provides an alternative to the renormalization and phase transition methods used in Wallace's (2005a) treatment of Baars' Global Workspace model. Like the earlier study, the new analysis produces the workplace itself, the tunable threshold of consciousness, and the essential role for embedding contexts, in an explicitly analytic 'necessary conditions' manner which suffers neither the mereological fallacy inherent to brain-only theories nor the sufficiency indeterminacy of neural network or agent-based simulations. This suggests that the new approach, and the earlier, represent different analytically solvable limits in a broad continuum of possible models, analogous to the differences between bond and site percolation or between the two and many-body limits of classical mechanics. The development significantly extends the theoretical foundations for an empirical general cognitive model (GCM) based on the Shannon-McMillan Theorem. Patterned after the general linear model which reflects the Central Limit Theorem, the proposed technique should be both useful for the reduction of expermiental data on consciousness and in the design of devices with capacities which may transcend those of conventional machines and provide new perspectives on the varieties of biological consciousness

    A Global Workspace perspective on mental disorders

    Get PDF
    Recent developments in Global Workspace theory suggest that human consciousness can suffer interpenetrating dysfunctions of mutual and reciprocal interaction with embedding environments which will have early onset and often insidiously staged developmental progression, possibly according to a cancer model. A simple rate distortion argument implies that, if an external information source is pathogenic, then sufficient exposure to it is sure to write a sufficiently accurate image of it on mind and body in a punctuated manner so as to initiate or promote simililarly progressively punctuated developmental disorder. There can, thus, be no simple, reductionist brain chemical 'bug in the program' whose 'fix' can fully correct the problem. On the contrary, the growth of an individual over the life course, and the inevitable contact with a toxic physical, social, or cultural environment, can be expected to initiate developmental problems which will become more intrusive over time, most obviously according to some damage accumulation model, but likely according to far more subtle, highly punctuated, schemes analogous to tumorigenesis. The key intervention, at the population level, is clearly to limit such exposures, a question of proper environmental sanitation, in a large sense, a matter of social justice which has long been understood to be determined almost entirely by the interactions of cultural trajectory, group power relations, and economic structure, with public policy. Intervention at the individual level appears limited to triggering or extending periods of remission, as is the case with most cancers

    Biologically inspired distributed machine cognition: a new formal approach to hyperparallel computation

    Get PDF
    The irresistable march toward multiple-core chip technology presents currently intractable pdrogramming challenges. High level mental processes in many animals, and their analogs for social structures, appear similarly massively parallel, and recent mathematical models addressing them may be adaptable to the multi-core programming problem

    Darwin's Rainbow: Evolutionary radiation and the spectrum of consciousness

    Get PDF
    Evolution is littered with paraphyletic convergences: many roads lead to functional Romes. We propose here another example - an equivalence class structure factoring the broad realm of possible realizations of the Baars Global Workspace consciousness model. The construction suggests many different physiological systems can support rapidly shifting, sometimes highly tunable, temporary assemblages of interacting unconscious cognitive modules. The discovery implies various animal taxa exhibiting behaviors we broadly recognize as conscious are, in fact, simply expressing different forms of the same underlying phenomenon. Mathematically, we find much slower, and even multiple simultaneous, versions of the basic structure can operate over very long timescales, a kind of paraconsciousness often ascribed to group phenomena. The variety of possibilities, a veritable rainbow, suggests minds today may be only a small surviving fraction of ancient evolutionary radiations - bush phylogenies of consciousness and paraconsciousness. Under this scenario, the resulting diversity was subsequently pruned by selection and chance extinction. Though few traces of the radiation may be found in the direct fossil record, exaptations and vestiges are scattered across the living mind. Humans, for instance, display an uncommonly profound synergism between individual consciousness and their embedding cultural heritages, enabling efficient Lamarkian adaptation
    corecore