6,364 research outputs found

    Agent-Based Computational Economics

    Get PDF
    Agent-based computational economics (ACE) is the computational study of economies modeled as evolving systems of autonomous interacting agents. Starting from initial conditions, specified by the modeler, the computational economy evolves over time as its constituent agents repeatedly interact with each other and learn from these interactions. ACE is therefore a bottom-up culture-dish approach to the study of economic systems. This study discusses the key characteristics and goals of the ACE methodology. Eight currently active research areas are highlighted for concrete illustration. Potential advantages and disadvantages of the ACE methodology are considered, along with open questions and possible directions for future research.Agent-based computational economics; Autonomous agents; Interaction networks; Learning; Evolution; Mechanism design; Computational economics; Object-oriented programming.

    A theoretical and computational basis for CATNETS

    Get PDF
    The main content of this report is the identification and definition of market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. These build the theoretical foundation for the work within the following two years of the CATNETS project. --Grid Computing

    SALSA: A Formal Hierarchical Optimization Framework for Smart Grid

    Get PDF
    The smart grid, by the integration of advanced control and optimization technologies, provides the traditional grid with an indisputable opportunity to deliver and utilize the electricity more efficiently. Building smart grid applications is a challenging task, which requires a formal modeling, integration, and validation framework for various smart grid domains. The design flow of such applications must adapt to the grid requirements and ensure the security of supply and demand. This dissertation, by proposing a formal framework for customers and operations domains in the smart grid, aims at delivering a smooth way for: i) formalizing their interactions and functionalities, ii) upgrading their components independently, and iii) evaluating their performance quantitatively and qualitatively.The framework follows an event-driven demand response program taking no historical data and forecasting service into account. A scalable neighborhood of prosumers (inside the customers domain), which are equipped with smart appliances, photovoltaics, and battery energy storage systems, are considered. They individually schedule their appliances and sell/purchase their surplus/demand to/from the grid with the purposes of maximizing their comfort and profit at each instant of time. To orchestrate such trade relations, a bilateral multi-issue negotiation approach between a virtual power plant (on behalf of prosumers) and an aggregator (inside the operations domain) in a non-cooperative environment is employed. The aggregator, with the objectives of maximizing its profit and minimizing the grid purchase, intends to match prosumers' supply with demand. As a result, this framework particularly addresses the challenges of: i) scalable and hierarchical load demand scheduling, and ii) the match between the large penetration of renewable energy sources being produced and consumed. It is comprised of two generic multi-objective mixed integer nonlinear programming models for prosumers and the aggregator. These models support different scheduling mechanisms and electricity consumption threshold policies.The effectiveness of the framework is evaluated through various case studies based on economic and environmental assessment metrics. An interactive web service for the framework has also been developed and demonstrated

    Theoretical and Computational Basis for Economical Ressource Allocation in Application Layer Networks - Annual Report Year 1

    Get PDF
    This paper identifies and defines suitable market mechanisms for Application Layer Networks (ALNs). On basis of the structured Market Engineering process, the work comprises the identification of requirements which adequate market mechanisms for ALNs have to fulfill. Subsequently, two mechanisms for each, the centralized and the decentralized case are described in this document. --Grid Computing

    Artificial Intelligence and Machine Learning Approaches to Energy Demand-Side Response: A Systematic Review

    Get PDF
    Recent years have seen an increasing interest in Demand Response (DR) as a means to provide flexibility, and hence improve the reliability of energy systems in a cost-effective way. Yet, the high complexity of the tasks associated with DR, combined with their use of large-scale data and the frequent need for near real-time de-cisions, means that Artificial Intelligence (AI) and Machine Learning (ML) — a branch of AI — have recently emerged as key technologies for enabling demand-side response. AI methods can be used to tackle various challenges, ranging from selecting the optimal set of consumers to respond, learning their attributes and pref-erences, dynamic pricing, scheduling and control of devices, learning how to incentivise participants in the DR schemes and how to reward them in a fair and economically efficient way. This work provides an overview of AI methods utilised for DR applications, based on a systematic review of over 160 papers, 40 companies and commercial initiatives, and 21 large-scale projects. The papers are classified with regards to both the AI/ML algorithm(s) used and the application area in energy DR. Next, commercial initiatives are presented (including both start-ups and established companies) and large-scale innovation projects, where AI methods have been used for energy DR. The paper concludes with a discussion of advantages and potential limitations of reviewed AI techniques for different DR tasks, and outlines directions for future research in this fast-growing area

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Social Carrying Capacity of Mass Tourist Sites: Theoretical and Practical Issues about its Measurement

    Get PDF
    Congestion is an important management problem at mass tourist sites. This essay focuses on the social carrying capacity (SCC) of a tourist site as indicator of residents’ and visitors’ perception of crowding, intended as the maximum number of visitors (MNV) tolerated. In case of conflict between the residents’ MNV tolerated and the visitors’ MNV tolerated, the policy-maker has to mediate. We consider the case in which the residents’ SCC is lower than the visitors’ SCC, and the site SCC is the result of a compromise between these two aspects of the SCC. This can be measured by making reference to two criteria of choice: the utility maximisation criterion and the voting rule. The use of one method rather than the other depends on the data available about the individual preferences on crowding. Assuming that individual preferences are known, a maximisation model for the computation of the site SCC is conceived. It represents the case in which the residents’ SCC is the limiting factor. The site SCC is intended as the number of visitors which maximises the social welfare function. Because a local policy-maker maximises the welfare of residents, in this model visitors are represented by those residents whose welfare wholly depends on the tourism sector, while the social costs due to crowding are borne by those residents who are partially or totally independent from tourism. Nevertheless, in practice, the individual preferences about crowding are not always known. In this case, the MNV tolerated can be computed by applying the majority voting rule. It is shown that, under certain conditions, the optimum number of visitors, obtained through a maximisation model, is equal to the MNV tolerated by the majority of voters.Sustainable tourism development, Tourism carrying capacity, Social carrying capacity, Maximisation criterion, Majority voting rule, Overcrowding, Mass tourist site

    Induced Technological Change in a Limited Foresight Optimization Model

    Get PDF
    The threat of global warming calls for a major transformation of the energy system the coming century. Modeling technological change is an important factor in energy systems modeling. Technological change may be treated as induced by climate policy or as exogenous. We investigate the importance of induced technological change (ITC) in GET-LFL, an iterative optimization model with limited foresight that includes learning-by-doing. Scenarios for stabilization of atmospheric CO2 concentrations at 400, 450, 500 and 550 ppm are studied. We find that the introduction of ITC reduces the total net present value of the abatement cost over this century by 3-9% compared to a case where technological learning is exogenous. Technology specific polices which force the introduction of fuel cell cars and solar PV in combination with ITC reduce the costs further by 4-7% and lead to significantly different technological solutions in different sectors, primarily in the transport sector.Energy system model, Limited foresight, Climate policy, Endougenous learning, Technological lock-in

    Agent-based simulation of electricity markets: a literature review

    Get PDF
    Liberalisation, climate policy and promotion of renewable energy are challenges to players of the electricity sector in many countries. Policy makers have to consider issues like market power, bounded rationality of players and the appearance of fluctuating energy sources in order to provide adequate legislation. Furthermore the interactions between markets and environmental policy instruments become an issue of increasing importance. A promising approach for the scientific analysis of these developments is the field of agent-based simulation. The goal of this article is to provide an overview of the current work applying this methodology to the analysis of electricity markets. --
    • 

    corecore