138 research outputs found

    An Evolutionary Pentagon Support Vector Finder Method

    Get PDF
    In dealing with big data, we need effective algorithms; effectiveness that depends, among others, on the ability to remove outliers from the data set, especially when dealing with classification problems. To this aim, support vector finder algorithms have been created to save just the most important data in the data pool. Nevertheless, existing classification algorithms, such as Fuzzy C-Means (FCM), suffer from the drawback of setting the initial cluster centers imprecisely. In this paper, we avoid existing shortcomings and aim to find and remove unnecessary data in order to speed up the final classification task without losing vital samples and without harming final accuracy; in this sense, we present a unique approach for finding support vectors, named evolutionary Pentagon Support Vector (PSV) finder method. The originality of the current research lies in using geometrical computations and evolutionary algorithms to make a more effective system, which has the advantage of higher accuracy on some data sets. The proposed method is subsequently tested with seven benchmark data sets and the results are compared to those obtained from performing classification on the original data (classification before and after PSV) under the same conditions. The testing returned promising results

    Victoria Amazonica Optimization (VAO): An Algorithm Inspired by the Giant Water Lily Plant

    Full text link
    The Victoria Amazonica plant, often known as the Giant Water Lily, has the largest floating spherical leaf in the world, with a maximum leaf diameter of 3 meters. It spreads its leaves by the force of its spines and creates a large shadow underneath, killing any plants that require sunlight. These water tyrants use their formidable spines to compel each other to the surface and increase their strength to grab more space from the surface. As they spread throughout the pond or basin, with the earliest-growing leaves having more room to grow, each leaf gains a unique size. Its flowers are transsexual and when they bloom, Cyclocephala beetles are responsible for the pollination process, being attracted to the scent of the female flower. After entering the flower, the beetle becomes covered with pollen and transfers it to another flower for fertilization. After the beetle leaves, the flower turns into a male and changes color from white to pink. The male flower dies and sinks into the water, releasing its seed to help create a new generation. In this paper, the mathematical life cycle of this magnificent plant is introduced, and each leaf and blossom are treated as a single entity. The proposed bio-inspired algorithm is tested with 24 benchmark optimization test functions, such as Ackley, and compared to ten other famous algorithms, including the Genetic Algorithm. The proposed algorithm is tested on 10 optimization problems: Minimum Spanning Tree, Hub Location Allocation, Quadratic Assignment, Clustering, Feature Selection, Regression, Economic Dispatching, Parallel Machine Scheduling, Color Quantization, and Image Segmentation and compared to traditional and bio-inspired algorithms. Overall, the performance of the algorithm in all tasks is satisfactory.Comment: 45 page

    Introduction to Facial Micro Expressions Analysis Using Color and Depth Images: A Matlab Coding Approach (Second Edition, 2023)

    Full text link
    The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment. FMER is a subset of image processing and it is a multidisciplinary topic to analysis. So, it requires familiarity with other topics of Artifactual Intelligence (AI) such as machine learning, digital image processing, psychology and more. So, it is a great opportunity to write a book which covers all of these topics for beginner to professional readers in the field of AI and even without having background of AI. Our goal is to provide a standalone introduction in the field of MFER analysis in the form of theorical descriptions for readers with no background in image processing with reproducible Matlab practical examples. Also, we describe any basic definitions for FMER analysis and MATLAB library which is used in the text, that helps final reader to apply the experiments in the real-world applications. We believe that this book is suitable for students, researchers, and professionals alike, who need to develop practical skills, along with a basic understanding of the field. We expect that, after reading this book, the reader feels comfortable with different key stages such as color and depth image processing, color and depth image representation, classification, machine learning, facial micro-expressions recognition, feature extraction and dimensionality reduction. The book attempts to introduce a gentle introduction to the field of Facial Micro Expressions Recognition (FMER) using Color and Depth images, with the aid of MATLAB programming environment.Comment: This is the second edition of the boo

    Military Innovation in the Third Age of U.S. Unmanned Aviation, 1991–2015

    Get PDF
    Military innovation studies have largely relied on monocausal accounts—rationalism, institutionalism, or culture—to explain technologically innovative and adaptive outcomes in defense organizations. None of these perspectives alone provided a compelling explanation for the adoption outcomes of unmanned aerial vehicles (UAVs) in the U.S. military from 1991 to 2015. Two questions motivated this research: Why, despite abundant material resources, mature technology, and operational need, are the most-capable UAVs not in the inventory across the services? What accounts for variations and patterns in UAV innovation adoption? The study selected ten UAV program episodes from the Air Force and Navy, categorized as high-, medium-, and low-end cases, for within-case and cross-case analysis. Primary and secondary sources, plus interviews, enabled process tracing across episodes. The results showed a pattern of adoption or rejection based on a logic-of-utility effectiveness and consistent resource availability: a military problem to solve, and a capability gap in threats or tasks and consistent monetary capacity; furthermore, ideational factors strengthened or weakened adoption. In conclusion, the study undermines single-perspective arguments as sole determinants of innovation, reveals that military culture is not monolithic in determining outcomes, and demonstrates that civil-military relationships no longer operate where civilian leaders hold inordinate sway over military institutions.Lieutenant Colonel, United States Air ForceApproved for public release; distribution is unlimited

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Segmenting Hand-Drawn Strokes

    Get PDF
    Pen-based interfaces utilize sketch recognition so users can create and interact with complex, graphical systems via drawn input. In order for people to freely draw within these systems, users' drawing styles should not be constrained. The low-level techniques involved with sketch recognition must then be perfected, because poor low-level accuracy can impair a user's interaction experience. Corner finding, also known as stroke segmentation, is one of the first steps to free-form sketch recognition. Corner finding breaks a drawn stroke into a set of primitive symbols such as lines, arcs, and circles, so that the original stoke data can be transformed into a more machine-friendly format. By working with sketched primitives, drawn objects can then be described in a visual language, noting what primitive shapes have been drawn and the shapes? geometric relationships to each other. We present three new corner finding techniques that improve segmentation accuracy. Our first technique, MergeCF, is a multi-primitive segmenter that splits drawn strokes into primitive lines and arcs. MergeCF eliminates extraneous primitives by merging them with their neighboring segments. Our second technique, ShortStraw, works with polyline-only data. Polyline segments are important since many domains use simple polyline symbols formed with squares, triangles, and arrows. Our ShortStraw algorithm is simple to implement, yet more powerful than previous polyline work in the corner finding literature. Lastly, we demonstrate how a combination technique can be used to pull the best corner finding results from multiple segmentation algorithms. This combination segmenter utilizes the best corners found from other segmentation techniques, eliminating many false negatives (missed primitive segmentations) from the final, low-level results. We will present the implementation and results from our new segmentation techniques, showing how they perform better than related work in the corner finding field. We will also discuss limitations of each technique, how we have sought to overcome those limitations, and where we believe the sketch recognition subfield of corner finding is headed

    Formation Navigation and Relative Localisation of Multi-Robot Systems

    Get PDF
    When proceeding from single to multiple robots, cooperative action is one of the most relevant topics. The domain of robotic security systems contains typical applications for a multi-robot system (MRS). Possible scenarios are safety and security issues on airports, harbours, large industry plants or museums. Additionally, the field of environmental supervision is an up-coming issue. Inherent to these applications is the need for an organised and coordinated navigation of the robots, and a vital prerequisite for any coordinated movements is a good localisation. This dissertation will present novel approaches to the problems of formation navigation and relative localisation with multiple ground-based mobile robots. It also looks into the question what kind of metric is applicable for multi-robot navigation problems. Thereby, the focus of this work will be on aspects of 1. coordinated navigation and movement A new potential-field-based approach to formation navigation is presented. In contradiction to classical potential-field-based formation approaches, the proposed method also uses the orientation between neighbours in the formation. Consequently, each robot has a designated position within the formation. Therefore, the new method is called directed potential field approach. Extensive experiments prove that the method is capable of generating all kinds of formation shapes, even in the presence of dense obstacles. All tests have been conducted with simulated and real robots and successfully guided the robot formation through environments with varying obstacle configurations. In comparison, the nondirected potential field approach turns out to be unstable regarding the positions of the robots within formations. The robots strive to switch their positions, e.g. when passing through narrow passages. Under such conditions the directed approach shows a preferable behaviour, called “breathing”. The formation shrinks or inflates depending on the obstacle situation while trying to maintain its shape and keep the robots at their desired positions inside the formation. For a more particular comparison of formation algorithms it is important to have measures that allow a meaningful evaluation of the experimental data. For this purpose a new formation metric is developed. If there are many obstacles, the formation error must be scaled down to be comparable to an empty environment where the error would be small. Assuming that the environment is unknown and possibly non-static, only actual sensor information can be used for these calculations. We developed a special weighting factor, which is inverse proportional to the “density” of obstacles and which turns out to model the influence of the environment adequately. 2. relative localisation A new method for relative localisation between the members of a robot group is introduced. This relative localisation approach uses mutual sensor observations to localise the robots with respect to other objects – without having an environment model. Techniques like the Extended Kalman Filter (EKF) have proven to be powerful tools in the field of single robot applications. This work presents extensions to these algorithms with respect to the use in MRS. These aspects are investigated and combined under the topic of improving and stabilising the performance of the localisation and navigation process. Most of the common localisation approaches use maps and/or landmarks with the intention of generating a globally consistent world-coordinate system for the robot group. The aim of the here presented relative localisation approach, on the other hand, is to maintain only relative positioning between the robots. The presented method enables a group of mobile robots to start at an unknown location in an unknown environment and then to incrementally estimate their own positions and the relative locations of the other robots using only sensor information. The result is a robust, fast and precise approach, which does not need any preconditions or special assumptions about the environment. To validate the approach extensive tests with both, real and simulated, robots have been conducted. For a more specific evaluation, the Mean Localisation Error (MLE) is introduced. The conducted experiments include a comparison between the proposed Extended Kalman Filter and a standard SLAM-based approach. The developed method robustly delivered an accuracy better than 2 cm and performed at least as well as the SLAM approach. The algorithm coped with scattered groups of robots while moving on arbitrarily shaped paths. In summary, this thesis presents novel approaches to the field of coordinated navigation in multi-robot systems. The results facilitate cooperative movements of robot groups as well as relative localisation among the group members. In addition, a solid foundation for a non-environment related metric for formation navigation is introduced

    The MinK Framework: An Integrated Framework to Assess Individual Knowledge in Organisational Context.

    Get PDF
    Knowledge is the currency of the global economy, the foundation of wealth creation, and the sole antecedent of sustainable competitive advantage in today’s markets. In the current business environment, success of organisations is dependent upon their ability to develop and implement resilient Knowledge Management (KM) strategies to leverage and exploit their knowledge assets. Yet, knowledge is intrinsically linked to individuals and their exclusive abilities to create, share and apply knowledge thereby creating value for their organisations. Knowledge holders are without doubt the valuable assets which lead the increasing velocity of organisational transformation in order to cope with market pressures and confront uncertainty. Effectual KM thus implicates knowledge assessment capability that enables the identification of knowledge holders within the firm and accordingly optimises the allocation of knowledge assets. Identifying and retaining knowledge holders requires a systematic KM initiative to help managers assess the individual knowledge of their employees and hence formulate and evaluate knowledge management and retention strategies. This research therefore attempts to focus on knowledge assessment practice and explores the underlying constructs of individual knowledge in the organisational context. In light of the knowledge-based view of the firm[1][2][3], a comprehensive theoretical model highlights the crucial role of individuals in organisational knowledge dynamics based on seminal KM theories of Stocks and Flows of Knowledge[4], Intellectual Capital[5] [6] [7], and the SECI Model of Knowledge Creation[8]. Evolving from this conceptual foundation, the MinK framework is proposed as an innovative framework that endows organisations in delineating knowledge stocks and visualising knowledge flows by providing an integrated assessment platform for decision makers. The presented framework ensures that individual knowledge is accurately assessed from a number of perspectives using a well-defined set of theoretically grounded and industry validated indicators stemming from a multi-dimensional scorecard. Flexibility is embedded in the MinK framework, allowing managers to customise the key measures according to the firm’s specific context. Adopting the 360-degree approach, the assessment process uses self evaluations and multi-source knowledge appraisals to provide rich and insightful results. An Individual Knowledge Index (IK-Index) that denotes the overall knowledge rating of each employee is another research outcome spanning out of a unique formula that combines a number of Multi-Criteria Decision Analysis (MCDA) techniques to consolidate assessment results into a single reflective numeral. The incorporation of technology enables the complete automation of the assessment process and helps to address parametric multiplicity and arithmetic complexity. Armed with advances in Information Technology, the MinK Web System offers a user-friendly interface supported by a sophisticated computational module and a smart deep learning algorithm to ensure the efficiency, security, and accuracy of the assessment process. Companies that used MinK in the pilot study have described the framework as an accurate assessment solution which can enable managers to make informed decisions, particularly in human capital planning. Such an approach balances the art and science of KM while taking into account the culture and dynamics of the organisation. Ultimately, this research advocates a people-centric KM approach that places the individual knowledge holder at the core of KM activity, and suggests that effective KM is essentially effective management of knowledge workers
    • …
    corecore