829 research outputs found

    Asynchronous networked MPC with ISM for uncertain nonlinear systems

    Get PDF
    A model-based event-triggered control scheme for nonlinear constrained continuous-time uncertain systems in networked configuration is presented in this paper. It is based on the combined use of Model Predictive Control (MPC) and Integral Sliding Mode (ISM) control, and it is oriented to reduce the packets transmission over the network both in the direct path and in the feedback path, in order to avoid network congestion. The key elements of the proposed control scheme are the ISM local control law, the MPC remote controller, a smart sensor and a smart actuator, both containing a copy of the nominal model of the plant. The role of the ISM control law is to compensate matched uncertainties, without amplifying the unmatched ones. The MPC controller with tightened constraints generates the control component oriented to comply with state and control requirements, and is asynchronous since the underlying constrained optimization problem is solved only when a triggering event occurs. In the paper, the robustness properties of the controlled system are theoretically analyzed, proving the regional input-tostate practical stability of the overall control scheme

    Event-Triggered Sliding Mode control algorithms for a class of uncertain nonlinear systems: Experimental assessment

    Get PDF
    An experimental assessment of the recently introduced event-triggered sliding mode control approach is presented in this paper. The major design requirement, in this approach, is to reduce the number of transmissions over the network, while guaranteeing that the sliding mode control is stabilizing with appropriate robustness in front of matched uncertainties. In the present paper a novel Event-Triggered Sliding Mode Control algorithm is first introduced and discussed and then it is compared with two different Model-Based Event-Triggered Sliding Mode Control algorithms. Finally, their experimental assessment is reported, obtaining satisfactory performance consistent with the theoretical treatment and fulfilling all the design requirements

    Nash Game Based Distributed Control Design for Balancing of Traffic Density over Freeway Networks

    Get PDF
    International audienceIn this paper, we study the problem of optimal balancing of vehicle density in the freeway traffic. The optimization is performed in a distributed manner by utilizing the controllability properties of the freeway network represented by the Cell Transmission Model. By using these properties, we identify the subsystems to be controlled by local ramp meters. The optimization problem is then formulated as a non-cooperative Nash game that is solved by decomposing it into a set of two-players hierarchical and competitive games. The process of optimization employs the communication channels matching the switching structure of system interconnectivity. By defining the internal model for the boundary flows, local optimal control problems are efficiently solved by utilizing the method of Linear Quadratic Regulator. The developed control strategy is tested via numerical simulations in two scenarios for uniformly congested and transient traffic

    Control-aware Communication for Cooperative Adaptive Cruise Control

    Full text link
    Utilizing vehicle-to-everything (V2X) communication technologies, vehicle platooning systems are expected to realize a new paradigm of cooperative driving with higher levels of traffic safety and efficiency. Connected and Autonomous Vehicles (CAVs) need to have proper awareness of the traffic context. However, as the quantity of interconnected entities grows, the expense of communication will become a significant factor. As a result, the cooperative platoon's performance will be influenced by the communication strategy. While maintaining desired levels of performance, periodic communication can be relaxed to more flexible aperiodic or event-triggered implementations. In this paper, we propose a control-aware communication solution for vehicle platoons. The method uses a fully distributed control-aware communication strategy, attempting to decrease the usage of communication resources while still preserving the desired closed-loop performance characteristics. We then leverage Model-Based Communication (MBC) to improve cooperative vehicle perception in non-ideal communication and propose a solution that combines control-aware communication with MBC for cooperative control of vehicle platoons. Our approach achieves a significant reduction in the average communication rate (47%47\%) while only slightly reducing control performance (e.g., less than 1%1\% speed deviation). Through extensive simulations, we demonstrate the benefits of combined control-aware communication with MBC for cooperative control of vehicle platoons.Comment: arXiv admin note: text overlap with arXiv:2203.1577

    Contributions to distributed MPC: coalitional and learning approaches

    Get PDF
    A growing number of works and applications are consolidating the research area of distributed control with partial and varying communication topologies. In this context, many of the works included in this thesis focus on the so-called coalitional MPC. This approach is characterized by the dynamic formation of groups of cooperative MPC agents (referred to as coalitions) and seeks to provide a performance close to the centralized one with lighter computations and communication demands. The thesis includes a literature review of existing distributed control methods that boost scalability and flexibility by exploiting the degree of interaction between local controllers. Likewise, we present a hierarchical coalitional MPC for traffic freeways and new methods to address the agents' clustering problem, which, given its combinatoria! nature, becomes a key issue for the real-time implementation of this type of controller. Additionally, new theoretical results to provide this clustering strategy with robust and stability guarantees to track changing targets are included. Further works of this thesis focus on the application of learning techniques in distributed and decentralized MPC schemes, thus paving the way for a future extension to the coalitional framework. In this regard, we have focused on the use of neural networks to aid distributed negotiations, and on the development of a multi­ agent learning MPC based on a collaborative data collection

    Coordination and Analysis of Connected and Autonomous Vehicles in Freeway On-Ramp Merging Areas

    Get PDF
    Freeway on-ramps are typical bottlenecks in the freeway network, where the merging maneuvers of ramp vehicles impose frequent disturbances on the traffic flow and cause negative impacts on traffic safety and efficiency. The emerging Connected and Autonomous Vehicles (CAVs) hold the potential for regulating the behaviors of each individual vehicle and are expected to substantially improve the traffic operation at freeway on-ramps. The aim of this research is to explore the possibilities of optimally facilitating freeway on-ramp merging operation through the coordination of CAVs, and to discuss the impacts of CAVs on the traffic performance at on-ramp merging.In view of the existing research efforts and gaps in the field of CAV on-ramp merging operation, a novel CAV merging coordination strategy is proposed by creating large gaps on the main road and directing the ramp vehicles into the created gaps in the form of platoon. The combination of gap creation and platoon merging jointly facilitates the mainline and ramp traffic and targets at the optimal performance at the traffic flow level. The coordination consists of three components: (1) mainline vehicles proactively decelerate to create large merging gaps; (2) ramp vehicles form platoons before entering the main road; (3) the gaps created on the main road and the platoons formed on the ramp are coordinated with each other in terms of size, speed, and arrival time. The coordination is analytically formulated as an optimization problem, incorporating the macroscopic and microscopic traffic flow models. The model uses traffic state parameters as inputs and determines the optimal coordination plan adaptive to real-time traffic conditions.The impacts of CAV coordination strategies on traffic efficiency are investigated through illustrative case studies conducted on microscopic traffic simulation platforms. The results show substantial improvements in merging efficiency, throughput, and traffic flow stability. In addition, the safety benefits of CAVs in the absence of specially designed cooperation strategies are investigated to reveal the CAV’s ability to eliminate critical human factors in the ramp merging process

    Traffic control via moving bottleneck of coordinated vehicles

    Get PDF
    International audienceThe possibility of properly controlling a moving bottleneck to improve the traffic flow is here considered. The traffic is represented by means of a macroscopic model able to take into account the interactions with the bottleneck. This latter interacts with the surrounding flow modifying the traffic density and the flow speed profiles. An optimal control problem is stated by using the speed of the moving bottleneck as control variable. Specifically in this paper the MPC (Model Predictive Control) approach is used in order to get a fuel consumption reduction when the traffic is congested due to the presence of a fixed bottleneck on the highway. In addition we have demonstrated that no increase of the travel time is caused by the control application. The concept illustrated in this paper suggests a future innovative traffic control approach. Indeed the prospective of exploiting special vehicles with manipulable speed to control the traffic flow is particularly attractive given the expected increasing penetration rate of autonomous vehicles in traffic networks in future years
    • …
    corecore