911 research outputs found

    Feature point detection in HDR images based on coefficient of variation

    Full text link
    Feature point (FP) detection is a fundamental step of many computer vision tasks. However, FP detectors are usually designed for low dynamic range (LDR) images. In scenes with extreme light conditions, LDR images present saturated pixels, which degrade FP detection. On the other hand, high dynamic range (HDR) images usually present no saturated pixels but FP detection algorithms do not take advantage of all the information present in such images. FP detection frequently relies on differential methods, which work well in LDR images. However, in HDR images, the differential operation response in bright areas overshadows the response in dark areas. As an alternative to standard FP detection methods, this study proposes an FP detector based on a coefficient of variation (CV) designed for HDR images. The CV operation adapts its response based on the standard deviation of pixels inside a window, working well in both dark and bright areas of HDR images. The proposed and standard detectors are evaluated by measuring their repeatability rate (RR) and uniformity. Our proposed detector shows better performance when compared to other standard state-of-the-art detectors. In uniformity metric, our proposed detector surpasses all the other algorithms. In other hand, when using the repeatability rate metric, the proposed detector is worse than Harris for HDR and SURF detectors

    Locally Non-rigid Registration for Mobile HDR Photography

    Full text link
    Image registration for stack-based HDR photography is challenging. If not properly accounted for, camera motion and scene changes result in artifacts in the composite image. Unfortunately, existing methods to address this problem are either accurate, but too slow for mobile devices, or fast, but prone to failing. We propose a method that fills this void: our approach is extremely fast---under 700ms on a commercial tablet for a pair of 5MP images---and prevents the artifacts that arise from insufficient registration quality

    Algorithms for the enhancement of dynamic range and colour constancy of digital images & video

    Get PDF
    One of the main objectives in digital imaging is to mimic the capabilities of the human eye, and perhaps, go beyond in certain aspects. However, the human visual system is so versatile, complex, and only partially understood that no up-to-date imaging technology has been able to accurately reproduce the capabilities of the it. The extraordinary capabilities of the human eye have become a crucial shortcoming in digital imaging, since digital photography, video recording, and computer vision applications have continued to demand more realistic and accurate imaging reproduction and analytic capabilities. Over decades, researchers have tried to solve the colour constancy problem, as well as extending the dynamic range of digital imaging devices by proposing a number of algorithms and instrumentation approaches. Nevertheless, no unique solution has been identified; this is partially due to the wide range of computer vision applications that require colour constancy and high dynamic range imaging, and the complexity of the human visual system to achieve effective colour constancy and dynamic range capabilities. The aim of the research presented in this thesis is to enhance the overall image quality within an image signal processor of digital cameras by achieving colour constancy and extending dynamic range capabilities. This is achieved by developing a set of advanced image-processing algorithms that are robust to a number of practical challenges and feasible to be implemented within an image signal processor used in consumer electronics imaging devises. The experiments conducted in this research show that the proposed algorithms supersede state-of-the-art methods in the fields of dynamic range and colour constancy. Moreover, this unique set of image processing algorithms show that if they are used within an image signal processor, they enable digital camera devices to mimic the human visual system s dynamic range and colour constancy capabilities; the ultimate goal of any state-of-the-art technique, or commercial imaging device

    Gain compensation across LIDAR scans

    Get PDF
    High-end Terrestrial Lidar Scanners are often equipped with RGB cameras that are used to colorize the point samples. Some of these scanners produce panoramic HDR images by encompassing the information of multiple pictures with different exposures. Unfortunately, exported RGB color values are not in an absolute color space, and thus point samples with similar reflectivity values might exhibit strong color differences depending on the scan the sample comes from. These color differences produce severe visual artifacts if, as usual, multiple point clouds colorized independently are combined into a single point cloud. In this paper we propose an automatic algorithm to minimize color differences among a collection of registered scans. The basic idea is to find correspondences between pairs of scans, i.e. surface patches that have been captured by both scans. If the patches meet certain requirements, their colors should match in both scans. We build a graph from such pair-wise correspondences, and solve for the gain compensation factors that better uniformize color across scans. The resulting panoramas can be used to colorize the point clouds consistently. We discuss the characterization of good candidate matches, and how to find such correspondences directly on the panorama images instead of in 3D space. We have tested this approach to uniformize color across scans acquired with a Leica RTC360 scanner, with very good results.This work has been partially supported by the project TIN2017-88515-C2-1-R funded by MCIN/AEI/10.13039/5011000- 11033/FEDER ‘‘A way to make Europe’’, by the EU Horizon 2020, JPICH Conservation, Protection and Use initiative (JPICH-0127) and the Spanish Agencia Estatal de Invesigación (grant PCI2020- 111979), by the Universidad Rey Juan Carlos through the Distinguished Researcher position INVESDIST-04 under the call from 17/12/2020, and a Maria Zambrano research fellowship at Universitat Politècnica de Catalunya funded by Ministerio de Universidades.Peer ReviewedPostprint (published version

    Learning geometric and lighting priors from natural images

    Get PDF
    Comprendre les images est d’une importance cruciale pour une pléthore de tâches, de la composition numérique au ré-éclairage d’une image, en passant par la reconstruction 3D d’objets. Ces tâches permettent aux artistes visuels de réaliser des chef-d’oeuvres ou d’aider des opérateurs à prendre des décisions de façon sécuritaire en fonction de stimulis visuels. Pour beaucoup de ces tâches, les modèles physiques et géométriques que la communauté scientifique a développés donnent lieu à des problèmes mal posés possédant plusieurs solutions, dont généralement une seule est raisonnable. Pour résoudre ces indéterminations, le raisonnement sur le contexte visuel et sémantique d’une scène est habituellement relayé à un artiste ou un expert qui emploie son expérience pour réaliser son travail. Ceci est dû au fait qu’il est généralement nécessaire de raisonner sur la scène de façon globale afin d’obtenir des résultats plausibles et appréciables. Serait-il possible de modéliser l’expérience à partir de données visuelles et d’automatiser en partie ou en totalité ces tâches ? Le sujet de cette thèse est celui-ci : la modélisation d’a priori par apprentissage automatique profond pour permettre la résolution de problèmes typiquement mal posés. Plus spécifiquement, nous couvrirons trois axes de recherche, soient : 1) la reconstruction de surface par photométrie, 2) l’estimation d’illumination extérieure à partir d’une seule image et 3) l’estimation de calibration de caméra à partir d’une seule image avec un contenu générique. Ces trois sujets seront abordés avec une perspective axée sur les données. Chacun de ces axes comporte des analyses de performance approfondies et, malgré la réputation d’opacité des algorithmes d’apprentissage machine profonds, nous proposons des études sur les indices visuels captés par nos méthodes.Understanding images is needed for a plethora of tasks, from compositing to image relighting, including 3D object reconstruction. These tasks allow artists to realize masterpieces or help operators to safely make decisions based on visual stimuli. For many of these tasks, the physical and geometric models that the scientific community has developed give rise to ill-posed problems with several solutions, only one of which is generally reasonable. To resolve these indeterminations, the reasoning about the visual and semantic context of a scene is usually relayed to an artist or an expert who uses his experience to carry out his work. This is because humans are able to reason globally on the scene in order to obtain plausible and appreciable results. Would it be possible to model this experience from visual data and partly or totally automate tasks? This is the topic of this thesis: modeling priors using deep machine learning to solve typically ill-posed problems. More specifically, we will cover three research axes: 1) surface reconstruction using photometric cues, 2) outdoor illumination estimation from a single image and 3) camera calibration estimation from a single image with generic content. These three topics will be addressed from a data-driven perspective. Each of these axes includes in-depth performance analyses and, despite the reputation of opacity of deep machine learning algorithms, we offer studies on the visual cues captured by our methods

    Evaluation of the effectiveness of HDR tone-mapping operators for photogrammetric applications

    Get PDF
    [EN] The ability of High Dynamic Range (HDR) imaging to capture the full range of lighting in a scene has meant that it is being increasingly used for Cultural Heritage (CH) applications. Photogrammetric techniques allow the semi-automatic production of 3D models from a sequence of images. Current photogrammetric methods are not always effective in reconstructing images under harsh lighting conditions, as significant geometric details may not have been captured accurately within under- and over-exposed regions of the image. HDR imaging offers the possibility to overcome this limitation, however the HDR images need to be tone mapped before they can be used within existing photogrammetric algorithms. In this paper we evaluate four different HDR tone-mapping operators (TMOs) that have been used to convert raw HDR images into a format suitable for state-of-the-art algorithms, and in particular keypoint detection techniques. The evaluation criteria used are the number of keypoints, the number of valid matches achieved and the repeatability rate. The comparison considers two local and two global TMOs. HDR data from four CH sites were used: Kaisariani Monastery (Greece), Asinou Church (Cyprus), Château des Baux (France) and Buonconsiglio Castle (Italy).We would like to thank Kurt Debattista, Timothy Bradley, Ratnajit Mukherjee, Diego Bellido Castañeda and TomBashford Rogers for their suggestions, help and encouragement. We would like to thank the hosting institutions: 3D Optical Metrology Group, FBK (Trento, Italy) and UMR 3495 MAP CNRS/MCC (Marseille, France), for their support during the data acquisition campaigns. This project has received funding from the European Union’s 7 th Framework Programme for research, technological development and demonstration under grant agreement No. 608013, titled “ITN-DCH: Initial Training Network for Digital Cultural Heritage: Projecting our Past to the Future”.Suma, R.; Stavropoulou, G.; Stathopoulou, EK.; Van Gool, L.; Georgopoulos, A.; Chalmers, A. (2016). Evaluation of the effectiveness of HDR tone-mapping operators for photogrammetric applications. Virtual Archaeology Review. 7(15):54-66. https://doi.org/10.4995/var.2016.6319SWORD546671

    PL-EVIO: Robust Monocular Event-based Visual Inertial Odometry with Point and Line Features

    Full text link
    Event cameras are motion-activated sensors that capture pixel-level illumination changes instead of the intensity image with a fixed frame rate. Compared with the standard cameras, it can provide reliable visual perception during high-speed motions and in high dynamic range scenarios. However, event cameras output only a little information or even noise when the relative motion between the camera and the scene is limited, such as in a still state. While standard cameras can provide rich perception information in most scenarios, especially in good lighting conditions. These two cameras are exactly complementary. In this paper, we proposed a robust, high-accurate, and real-time optimization-based monocular event-based visual-inertial odometry (VIO) method with event-corner features, line-based event features, and point-based image features. The proposed method offers to leverage the point-based features in the nature scene and line-based features in the human-made scene to provide more additional structure or constraints information through well-design feature management. Experiments in the public benchmark datasets show that our method can achieve superior performance compared with the state-of-the-art image-based or event-based VIO. Finally, we used our method to demonstrate an onboard closed-loop autonomous quadrotor flight and large-scale outdoor experiments. Videos of the evaluations are presented on our project website: https://b23.tv/OE3QM6

    High-fidelity colour reproduction for high-dynamic-range imaging

    Get PDF
    The aim of this thesis is to develop a colour reproduction system for high-dynamic-range (HDR) imaging. Classical colour reproduction systems fail to reproduce HDR images because current characterisation methods and colour appearance models fail to cover the dynamic range of luminance present in HDR images. HDR tone-mapping algorithms have been developed to reproduce HDR images on low-dynamic-range media such as LCD displays. However, most of these models have only considered luminance compression from a photographic point of view and have not explicitly taken into account colour appearance. Motivated by the idea to bridge the gap between crossmedia colour reproduction and HDR imaging, this thesis investigates the fundamentals and the infrastructure of cross-media colour reproduction. It restructures cross-media colour reproduction with respect to HDR imaging, and develops a novel cross-media colour reproduction system for HDR imaging. First, our HDR characterisation method enables us to measure HDR radiance values to a high accuracy that rivals spectroradiometers. Second, our colour appearance model enables us to predict human colour perception under high luminance levels. We first built a high-luminance display in order to establish a controllable high-luminance viewing environment. We conducted a psychophysical experiment on this display device to measure perceptual colour attributes. A novel numerical model for colour appearance was derived from our experimental data, which covers the full working range of the human visual system. Our appearance model predicts colour and luminance attributes under high luminance levels. In particular, our model predicts perceived lightness and colourfulness to a significantly higher accuracy than other appearance models. Finally, a complete colour reproduction pipeline is proposed using our novel HDR characterisation and colour appearance models. Results indicate that our reproduction system outperforms other reproduction methods with statistical significance. Our colour reproduction system provides high-fidelity colour reproduction for HDR imaging, and successfully bridges the gap between cross-media colour reproduction and HDR imaging
    corecore