1,921 research outputs found

    The MRS UAV System: Pushing the Frontiers of Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles

    Full text link
    We present a multirotor Unmanned Aerial Vehicle control (UAV) and estimation system for supporting replicable research through realistic simulations and real-world experiments. We propose a unique multi-frame localization paradigm for estimating the states of a UAV in various frames of reference using multiple sensors simultaneously. The system enables complex missions in GNSS and GNSS-denied environments, including outdoor-indoor transitions and the execution of redundant estimators for backing up unreliable localization sources. Two feedback control designs are presented: one for precise and aggressive maneuvers, and the other for stable and smooth flight with a noisy state estimate. The proposed control and estimation pipeline are constructed without using the Euler/Tait-Bryan angle representation of orientation in 3D. Instead, we rely on rotation matrices and a novel heading-based convention to represent the one free rotational degree-of-freedom in 3D of a standard multirotor helicopter. We provide an actively maintained and well-documented open-source implementation, including realistic simulation of UAV, sensors, and localization systems. The proposed system is the product of years of applied research on multi-robot systems, aerial swarms, aerial manipulation, motion planning, and remote sensing. All our results have been supported by real-world system deployment that shaped the system into the form presented here. In addition, the system was utilized during the participation of our team from the CTU in Prague in the prestigious MBZIRC 2017 and 2020 robotics competitions, and also in the DARPA SubT challenge. Each time, our team was able to secure top places among the best competitors from all over the world. On each occasion, the challenges has motivated the team to improve the system and to gain a great amount of high-quality experience within tight deadlines.Comment: 28 pages, 20 figures, submitted to Journal of Intelligent & Robotic Systems (JINT), for the provided open-source software see http://github.com/ctu-mr

    The Phoenix Drone: An Open-Source Dual-Rotor Tail-Sitter Platform for Research and Education

    Full text link
    In this paper, we introduce the Phoenix drone: the first completely open-source tail-sitter micro aerial vehicle (MAV) platform. The vehicle has a highly versatile, dual-rotor design and is engineered to be low-cost and easily extensible/modifiable. Our open-source release includes all of the design documents, software resources, and simulation tools needed to build and fly a high-performance tail-sitter for research and educational purposes. The drone has been developed for precision flight with a high degree of control authority. Our design methodology included extensive testing and characterization of the aerodynamic properties of the vehicle. The platform incorporates many off-the-shelf components and 3D-printed parts, in order to keep the cost down. Nonetheless, the paper includes results from flight trials which demonstrate that the vehicle is capable of very stable hovering and accurate trajectory tracking. Our hope is that the open-source Phoenix reference design will be useful to both researchers and educators. In particular, the details in this paper and the available open-source materials should enable learners to gain an understanding of aerodynamics, flight control, state estimation, software design, and simulation, while experimenting with a unique aerial robot.Comment: In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA'19), Montreal, Canada, May 20-24, 201

    Data Fusion Algorithms for Multiple Inertial Measurement Units

    Get PDF
    A single low cost inertial measurement unit (IMU) is often used in conjunction with GPS to increase the accuracy and improve the availability of the navigation solution for a pedestrian navigation system. This paper develops several fusion algorithms for using multiple IMUs to enhance performance. In particular, this research seeks to understand the benefits and detriments of each fusion method in the context of pedestrian navigation. Three fusion methods are proposed. First, all raw IMU measurements are mapped onto a common frame (i.e., a virtual frame) and processed in a typical combined GPS-IMU Kalman filter. Second, a large stacked filter is constructed of several IMUs. This filter construction allows for relative information between the IMUs to be used as updates. Third, a federated filter is used to process each IMU as a local filter. The output of each local filter is shared with a master filter, which in turn, shares information back with the local filters. The construction of each filter is discussed and improvements are made to the virtual IMU (VIMU) architecture, which is the most commonly used architecture in the literature. Since accuracy and availability are the most important characteristics of a pedestrian navigation system, the analysis of each filter’s performance focuses on these two parameters. Data was collected in two environments, one where GPS signals are moderately attenuated and another where signals are severely attenuated. Accuracy is shown as a function of architecture and the number of IMUs used

    Range filtering for sequential GPS receivers with external sensor augmentation

    Get PDF
    The filtering of the satellite range and range-rate measurements from single channel sequential Global Positioning System receivers is usually done with an extended Kalman filter which has state variables defined in terms of an orthogonal navigation reference frame. An attractive suboptimal alternative is range-domain filtering, in which the individual satellite measurements are filtered separately before they are combined for the navigation solution. The main advantages of range-domain filtering are decreased processing and storage requirements and simplified tuning. Several range filter mechanization alternatives are presented, along with an innovative approach for combining the filtered range-domain quantities to determine the navigation state estimate. In addition, a method is outlined for incorporating measurements from auxiliary sensors such as altimeters into the navigation state estimation scheme similarly to the satellite measurements. A method is also described for incorporating inertial measurements into the navigation state estimator as a process driver

    Inertial Measurement Unit based Virtual Antenna Arrays - DoA Estimation and Positioning in Wireless Networks

    Get PDF
    Today we have different location based services available in a mobile phone or mobile station (MS). These services include: direction finding to nearby ATMs, locating favorite food restaurants, or finding any target destination. Similarly, we see different applications of the positioning and navigation systems in firefighting or other rescue operations. The common factor in almost all of the location based services is the system's ability to determine the user's current position, with reference to a floor plan or a navigation map. Current technologies are using sensor data measurements from one or more sensors, available to the positioning device, for positioning and navigation. Typical examples are radio based positioning such as global positioning system, inertial sensors based inertial navigation system, or camera based positioning systems. Different accuracy and availability conditions of the positioning and navigation solution can be obtained depending on the positioning algorithms and the available sensor information.Nowadays, the focus of research in positioning and navigation has been mostly on the use of existing hardware infrastructure and low-cost solutions, such that the proposed technique can be deployed with ease and without extra infrastructure requirements as well as without any expensive sensor equipment. In this work, we investigate a novel idea for positioning using existing wireless networks and low-cost inertial sensor measurements available at the MS. We propose to use received baseband radio signal along with inertial sensor data, such as accelerometer and rate gyroscope measurements, for direction of arrival (DoA) estimation and positioning. The DoA information from different base stations or access points can be used to estimate the MS position using triangulation technique. Furthermore, due to size and cost restrictions it is difficult to have real antenna arrays at the MS, the idea of DoA estimation and positioning is proposed to be used with single antenna devices by using the so-called virtual antenna arrays.We have presented our research results in three different papers. We provide measurement based results to perform a quantitative evaluation of DoA estimation using arbitrary virtual antenna arrays in 3-D; where a state-of-the-art high-resolution algorithm has been used for radio signal parameter estimation. Furthermore, we provide an extended Kalman filter framework to investigate the performance of unaided inertial navigation systems with 3-axis accelerometer and 3-axis rate gyroscope measurements, from a six-degrees-of-freedom inertial measurement unit. Using the extended Kalman filter framework, we provide results for position estimation error standard deviation with respect to integration time for an unaided inertial navigation system; where the effect of different stochastic errors noise sources in the inertial sensors measurements such as white Gaussian noise and bias instability noise is investigated. Also, we derive a closed form expression for Cramér-Rao lower bound to investigate DoA estimation accuracy for a far-field source using random antenna arrays in 3-D. The Cramér-Rao lower bound is obtained using known antenna coordinates as well as using estimated antenna coordinates, where the antenna coordinates are estimated with an uncertainty whose standard deviation is known. Furthermore, using Monte-Carlo simulations for random antenna arrays, we provide Cramér-Rao lower bound based performance evaluation of random 3-D antenna arrays for DoA estimation
    • …
    corecore