5 research outputs found

    A rigorous approach to facilitate and guarantee the correctness of the genetic testing management in human genome information systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent medical and biological technology advances have stimulated the development of new testing systems that have been providing huge, varied amounts of molecular and clinical data. Growing data volumes pose significant challenges for information processing systems in research centers. Additionally, the routines of genomics laboratory are typically characterized by high parallelism in testing and constant procedure changes.</p> <p>Results</p> <p>This paper describes a formal approach to address this challenge through the implementation of a genetic testing management system applied to human genome laboratory. We introduced the Human Genome Research Center Information System (CEGH) in Brazil, a system that is able to support constant changes in human genome testing and can provide patients updated results based on the most recent and validated genetic knowledge. Our approach uses a common repository for process planning to ensure reusability, specification, instantiation, monitoring, and execution of processes, which are defined using a relational database and rigorous control flow specifications based on process algebra (ACP). The main difference between our approach and related works is that we were able to join two important aspects: 1) process scalability achieved through relational database implementation, and 2) correctness of processes using process algebra. Furthermore, the software allows end users to define genetic testing without requiring any knowledge about business process notation or process algebra.</p> <p>Conclusions</p> <p>This paper presents the CEGH information system that is a Laboratory Information Management System (LIMS) based on a formal framework to support genetic testing management for Mendelian disorder studies. We have proved the feasibility and showed usability benefits of a rigorous approach that is able to specify, validate, and perform genetic testing using easy end user interfaces.</p

    An Environment For Knowledge Discovery In Biology

    No full text
    This paper describes a data mining environment for knowledge discovery in bioinformatics applications. The system has a generic kernel that implements the mining functions to be applied to input primary databases, with a warehouse architecture, of biomedical information. Both supervised and unsupervised classification can be implemented within the kernel and applied to data extracted from the primary database, with the results being suitably stored in a complex object database for knowledge discovery. The kernel also includes a specific high-performance library that allows designing and applying the mining functions in parallel machines. The experimental results obtained by the application of the kernel functions are reported. © 2003 Elsevier Ltd. All rights reserved.345427447Graves, M., Bergeman, E.R., Lawrence, C.B., A graph conceptual model for developing human genome center databases (1996) Comput. Biol. Med., 26, pp. 183-197Baujard, O., Baujard, V., Aurel, S., Boyerb, C., Appel, R.D., Trends in medical information retrieval on internet (1998) Comput. Biol. Med., 28, pp. 589-601Delèage, G., Combet, C., Blanchet, C., Geourjon, C., ANTHEPROT: An integrated protein sequence analysis software with client/server capabilities (2001) Comput. Biol. Med., 31, pp. 259-267Freeman, W.M., Robertson, D.J., Vrana, K.E., Fundamentals of DNA hybridization arrays for gene expression analysis (2000) BioTechniques, 29, pp. 1042-1055Eisen, M.B., Spellman, P.T., Brown, P.O., Botstein, D., Cluster analysis and display of genome-wide expression patterns (1998) Proc. Natl Acad. Sci. USA, 95, pp. 14863-14868Spellman, P.T., Sherlock, G., Zhang, M.Q., Iyer, V.R., Anders, K., Eisen, M.B., Brown, P.O., Futcher, B., Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization (1998) Mol. Biol. Cell, 9, pp. 3273-3297Van Hal, N.L., Vorst, O., Van Houwelingen, A.M., Kok, E.J., Peijnenburg, A., Aharoni, A., Van Tunen, A.J., Keijer, J., The application of DNA microarrays in gene expression analysis (2000) J. Biotechnol., 78, pp. 271-280Eisen, M., (1999) ScanAlyse User Manual, , http://rana.lbl.gov/, Vol. 2.35Chen, Y., Dougherty, E., Bittner, M., Ratio-based decisions and the quantitative analysis of cDNA micro-array images (1997) J. Biomed. Opt., 2, pp. 364-374Quackenbush, J., Computational analysis of microarray data (2001) Nat. Genet. Rev., 2, pp. 418-427Barrera, J., Cesar Jr., R.M., Ferreira, J.E., Gubitoso, M.D., Hirata, N.S.T., Hirata Jr., R., Neves, E.J., (2000) An Integrated Environment for Storage and Analysis of Genetic Data, , Technical Report RT-BIOINFO-2000-01-R, USP Center for Bioinformatics, SeptemberBruno, O.M., Cesar Jr., R.M., Consularo, L.A., Da Costa, F.L., Σynergos - Synergetic vision research (2001) Real-Time Systems, 21, pp. 7-42Jakobovits, R., Lewis, L., Ahrens, J., Shapiro, L., Tanimoto, S., Brinkley, J.F., A visual database environment for scientific research (1996) J. Visual Languages Comput., 7, pp. 361-375Duda, R.O., Hart, P.E., Stork, D., (2000) Pattern Classification, , New York: WileyTheodoridis, S., Koutroumbas, K., (1999) Pattern Recognition, , New York: Academic PressDougherty, E., Barrera, J., Binary Logical Operators (1999) Non Linear Filters for Image Processing, pp. 1-60. , E.R. Dougherty, J.A. Astola (Eds.), IEEE/SPIE, New YorkAnastassiou, D., Genomic signal processing (2001) IEEE Signal Process. Mag., 18, pp. 8-20Iyer, V.R., Eisen, M.B., Ross, D.T., Schuler, G., Moore, T., Lee, J.C., Trent, J.M., Brown, P.O., The transcriptional program in the response of human fibroblasts to serum (1999) Science, 283, pp. 83-87Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E.S., Golub, T.R., Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation (1999) Proc. Natl Acad. Sci. USA, 96, pp. 2907-2912Witten, I.H., Frank, E., (1999) Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, , Los Altos, CA: Morgan KaufmannValiant, L.G., A theory of the learnable (1984) Commun. ACM, 27, pp. 1134-1142Anthony, M., Biggs, N., (1992) Computational Learning Theory, , Cambridge: Cambridge University PressJain, A.K., Duin, R.P.W., Mao, J., Statistical pattern recognition: A review (2000) IEEE Trans. Pattern Anal. Mach. Intell., 22, pp. 4-37Barrera, J., Terada, R., Hirata Jr., R., Automatic programming of morphological machines by PAC learning (2000) Fundamenta Inform., 41, pp. 229-258Campos, T.E., Bloch, I., Cesar Jr., R.M., Feature selection based on fuzzy distances between clusters: First results on simulated data (2001) Proceedings of the ICAPR'2001 - International Conference on Advances in Pattern Recognition, 2013, pp. 186-195. , S. Singh, N. Murshed, W. Kropatsch (Eds.), Lecture Notes in Computer Science, Springer, BerlinJain, A.K., Zongker, D., Feature selection - Evaluation, application, and small sample performance (1997) IEEE Trans. Pattern Anal. Mach. Intell., 19 (2), pp. 153-158Kim, S., Barrera, J., Dougherty, E., Chen, Y., Bittner, M., Trent, J.M., Strong feature sets from small samples (2002) J. Comput. Biol., 9 (1), pp. 127-146Fu, K.S., (1982) Syntactic Pattern Recognition and Applications, , Englewood Cliffs, NJ: Prentice-HallJain, A.K., Murty, N.M., Flynn, P.J., Data clustering: A review (1999) ACM Comput. Surv., 31, pp. 264-323Da Costa, F.L., Cesar- Jr., R.M., (2001) Shape Analysis and Classification: Theory and Practice, , Boca Raton, FL: CRC PressFerreira, J.E., Busichia, G., Database modularization design for the construction of flexible information systems (1999) Proceedings IEEE for the IDEAS99, pp. 415-422. , http://www.cs.concordia.ca/ideas, (Montreal, Canada, 2,3,4 Ago)Sakharkar, M.K., Tan, T.W., Souza, S., Generation of a database containing discondant intron positions in eukaryotic genes (MIDB) (2001) Bioinformatics, 17, pp. 671-675Han, J., Pei, J., Dong, G., Wang, K., Efficient computation of iceberg cubes with complex measures (2001) Proceedings of the 2001 ACM-SIGMOD International Conference on Management of Data (SIGMOD'01), pp. 45-56. , Santa Barbara, CA, MayDougherty, E., Barrera, J., Brun, M., Kim, S., Cesar- Jr., R.M., Chen, Y., Bittner, M., Trent, J.M., Inference from clustering with application to gene-expression microarrays (2002) J. Comput. Biol., 9 (1), pp. 105-126Hirata Jr., R., Barrera, J., Hashimoto, R.F., Dantas, D.O., Esteves, G.H., Segmentation of Microarray Images by Mathematical Morphology (2002) Real-Time Imaging, 8 (6), pp. 491-505Armelin, H.A., Barrera, J., Dougherty, E.R., Gubitoso, M.D., Ferreira, J.E., Hirata, N.S.T., Neves, E.J., A simulator for gene expression networks (2001) Proceedings of the SPIE Microarrays: Optical Technologies and Informatics, 4266, pp. 248-259. , SPIE, San JoseDougherty, E.R., Barrera, J., Brun, M., Kim, S., Cesar Jr., R.M., Chen, Y., Bitner, M., Trent, J., Time series inference from clustering (2001) Proceedings of the SPIE Microarrays: Optical Technologies and Informatics, 4266, pp. 222-227. , SPIE, San JoseHirata Jr., R., Barrera, J., Hashimoto, R.F., Dantas, D.O., Microarray gridding by mathematical morphology (2001) Proceedings of SIBGRAPI, pp. 112-119. , IEEE, FlorianópolisLotfi, C.F.P., Todorovic, Z., Armelin, H.A., Schimmer, B.P., Unmasking a growth-promoting effect of the adrenocorticotropic hormone in Y1 mouse adrenocortical tumor cells (1997) J. Biol. Chem., 272, pp. 29886-29891Ideker, T., Thorsson, V., Ranish, J.A., Christmas, R., Buhler, J., Eng, J.K., Bumgarner, R., Hood, L., Integrated genomic and proteomic analyses of a systematically perturbed metabolic network (2001) Science, 292, pp. 929-934Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Trent, J., Molecular classification of cutaneous malignant melanoma by gene expression profiling (2000) Nature, 406, pp. 536-540Ben-Dor, A., Shamir, R., Yakhini, Z., Clustering gene expression patterns (1999) Comput. Biol., 6, pp. 281-297Perou, C.M., Jeffrey, S.S., Van De Rijn, M., Rees, C.A., Eisen, M.B., Ross, D.T., Pergamenschikov, A., Botstein, D., Distinctive gene expression patterns in human mammary epithelial cells and breast cancers (1999) Proc. Natl Acad. Sci. USA, 96, pp. 9212-921

    An environment for knowledge discovery in biology

    No full text
    This paper describes a data mining environment for knowledge discovery in bioinformatics applications. The system has a generic kernel that implements the mining functions to be applied to input primary databases, with a warehouse architecture, of biomedical information. Both supervised and unsupervised classification can be implemented within the kernel and applied to data extracted from the primary database, with the results being suitably stored in a complex object database for knowledge discovery. The kernel also includes a specific high-performance library that allows designing and applying the mining functions in parallel machines. The experimental results obtained by the application of the kernel functions are reported. © 2003 Elsevier Ltd. All rights reserved
    corecore