8,009 research outputs found

    Low dimensional manifolds for exact representation of open quantum systems

    Full text link
    Weakly nonlinear degrees of freedom in dissipative quantum systems tend to localize near manifolds of quasi-classical states. We present a family of analytical and computational methods for deriving optimal unitary model transformations based on representations of finite dimensional Lie groups. The transformations are optimal in that they minimize the quantum relative entropy distance between a given state and the quasi-classical manifold. This naturally splits the description of quantum states into quasi-classical coordinates that specify the nearest quasi-classical state and a transformed quantum state that can be represented in fewer basis levels. We derive coupled equations of motion for the coordinates and the transformed state and demonstrate how this can be exploited for efficient numerical simulation. Our optimization objective naturally quantifies the non-classicality of states occurring in some given open system dynamics. This allows us to compare the intrinsic complexity of different open quantum systems.Comment: Added section on semi-classical SR-latch, added summary of method, revised structure of manuscrip

    Simple approach to approximate quantum error correction based on the transpose channel

    Get PDF
    We demonstrate that there exists a universal, near-optimal recovery map—the transpose channel—for approximate quantum error-correcting codes, where optimality is defined using the worst-case fidelity. Using the transpose channel, we provide an alternative interpretation of the standard quantum error correction (QEC) conditions and generalize them to a set of conditions for approximate QEC (AQEC) codes. This forms the basis of a simple algorithm for finding AQEC codes. Our analytical approach is a departure from earlier work relying on exhaustive numerical search for the optimal recovery map, with optimality defined based on entanglement fidelity. For the practically useful case of codes encoding a single qubit of information, our algorithm is particularly easy to implement

    Task adapted reconstruction for inverse problems

    Full text link
    The paper considers the problem of performing a task defined on a model parameter that is only observed indirectly through noisy data in an ill-posed inverse problem. A key aspect is to formalize the steps of reconstruction and task as appropriate estimators (non-randomized decision rules) in statistical estimation problems. The implementation makes use of (deep) neural networks to provide a differentiable parametrization of the family of estimators for both steps. These networks are combined and jointly trained against suitable supervised training data in order to minimize a joint differentiable loss function, resulting in an end-to-end task adapted reconstruction method. The suggested framework is generic, yet adaptable, with a plug-and-play structure for adjusting both the inverse problem and the task at hand. More precisely, the data model (forward operator and statistical model of the noise) associated with the inverse problem is exchangeable, e.g., by using neural network architecture given by a learned iterative method. Furthermore, any task that is encodable as a trainable neural network can be used. The approach is demonstrated on joint tomographic image reconstruction, classification and joint tomographic image reconstruction segmentation

    Best-fit quasi-equilibrium ensembles: a general approach to statistical closure of underresolved Hamiltonian dynamics

    Get PDF
    A new method of deriving reduced models of Hamiltonian dynamical systems is developed using techniques from optimization and statistical estimation. Given a set of resolved variables that define a model reduction, the quasi-equilibrium ensembles associated with the resolved variables are employed as a family of trial probability densities on phase space. The residual that results from submitting these trial densities to the Liouville equation is quantified by an ensemble-averaged cost function related to the information loss rate of the reduction. From an initial nonequilibrium state, the statistical state of the system at any later time is estimated by minimizing the time integral of the cost function over paths of trial densities. Statistical closure of the underresolved dynamics is obtained at the level of the value function, which equals the optimal cost of reduction with respect to the resolved variables, and the evolution of the estimated statistical state is deduced from the Hamilton-Jacobi equation satisfied by the value function. In the near-equilibrium regime, or under a local quadratic approximation in the far-from-equilibrium regime, this best-fit closure is governed by a differential equation for the estimated state vector coupled to a Riccati differential equation for the Hessian matrix of the value function. Since memory effects are not explicitly included in the trial densities, a single adjustable parameter is introduced into the cost function to capture a time-scale ratio between resolved and unresolved motions. Apart from this parameter, the closed equations for the resolved variables are completely determined by the underlying deterministic dynamics
    • …
    corecore