102,956 research outputs found

    An information-theoretic proof of Nash's inequality

    Full text link
    We show that an information-theoretic property of Shannon's entropy power, known as concavity of entropy power, can be fruitfully employed to prove inequalities in sharp form. In particular, the concavity of entropy power implies the logarithmic Sobolev inequality, and Nash's inequality with the sharp constant

    The conditional entropy power inequality for quantum additive noise channels

    Get PDF
    We prove the quantum conditional Entropy Power Inequality for quantum additive noise channels. This inequality lower bounds the quantum conditional entropy of the output of an additive noise channel in terms of the quantum conditional entropies of the input state and the noise when they are conditionally independent given the memory. We also show that this conditional Entropy Power Inequality is optimal in the sense that we can achieve equality asymptotically by choosing a suitable sequence of Gaussian input states. We apply the conditional Entropy Power Inequality to find an array of information-theoretic inequalities for conditional entropies which are the analogues of inequalities which have already been established in the unconditioned setting. Furthermore, we give a simple proof of the convergence rate of the quantum Ornstein-Uhlenbeck semigroup based on Entropy Power Inequalities.Comment: 26 pages; updated to match published versio

    Geometric inequalities from phase space translations

    Get PDF
    We establish a quantum version of the classical isoperimetric inequality relating the Fisher information and the entropy power of a quantum state. The key tool is a Fisher information inequality for a state which results from a certain convolution operation: the latter maps a classical probability distribution on phase space and a quantum state to a quantum state. We show that this inequality also gives rise to several related inequalities whose counterparts are well-known in the classical setting: in particular, it implies an entropy power inequality for the mentioned convolution operation as well as the isoperimetric inequality, and establishes concavity of the entropy power along trajectories of the quantum heat diffusion semigroup. As an application, we derive a Log-Sobolev inequality for the quantum Ornstein-Uhlenbeck semigroup, and argue that it implies fast convergence towards the fixed point for a large class of initial states.Comment: 37 pages; updated to match published versio
    corecore