328 research outputs found

    An entropy argument for counting matroids

    Full text link
    We show how a direct application of Shearers' Lemma gives an almost optimum bound on the number of matroids on nn elements.Comment: Short note, 4 page

    Counting matroids in minor-closed classes

    Full text link
    A flat cover is a collection of flats identifying the non-bases of a matroid. We introduce the notion of cover complexity, the minimal size of such a flat cover, as a measure for the complexity of a matroid, and present bounds on the number of matroids on nn elements whose cover complexity is bounded. We apply cover complexity to show that the class of matroids without an NN-minor is asymptotically small in case NN is one of the sparse paving matroids U2,kU_{2,k}, U3,6U_{3,6}, P6P_6, Q6Q_6, or R6R_6, thus confirming a few special cases of a conjecture due to Mayhew, Newman, Welsh, and Whittle. On the other hand, we show a lower bound on the number of matroids without M(K4)M(K_4)-minor which asymptoticaly matches the best known lower bound on the number of all matroids, due to Knuth.Comment: 13 pages, 3 figure

    Elementary bounds on Poincare and log-Sobolev constants for decomposable Markov chains

    Full text link
    We consider finite-state Markov chains that can be naturally decomposed into smaller ``projection'' and ``restriction'' chains. Possibly this decomposition will be inductive, in that the restriction chains will be smaller copies of the initial chain. We provide expressions for Poincare (resp. log-Sobolev) constants of the initial Markov chain in terms of Poincare (resp. log-Sobolev) constants of the projection and restriction chains, together with further a parameter. In the case of the Poincare constant, our bound is always at least as good as existing ones and, depending on the value of the extra parameter, may be much better. There appears to be no previously published decomposition result for the log-Sobolev constant. Our proofs are elementary and self-contained.Comment: Published at http://dx.doi.org/10.1214/105051604000000639 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On the number of matroids compared to the number of sparse paving matroids

    Get PDF
    It has been conjectured that sparse paving matroids will eventually predominate in any asymptotic enumeration of matroids, i.e. that limnsn/mn=1\lim_{n\rightarrow\infty} s_n/m_n = 1, where mnm_n denotes the number of matroids on nn elements, and sns_n the number of sparse paving matroids. In this paper, we show that limnlogsnlogmn=1.\lim_{n\rightarrow \infty}\frac{\log s_n}{\log m_n}=1. We prove this by arguing that each matroid on nn elements has a faithful description consisting of a stable set of a Johnson graph together with a (by comparison) vanishing amount of other information, and using that stable sets in these Johnson graphs correspond one-to-one to sparse paving matroids on nn elements. As a consequence of our result, we find that for some β>0\beta > 0, asymptotically almost all matroids on nn elements have rank in the range n/2±βnn/2 \pm \beta\sqrt{n}.Comment: 12 pages, 2 figure

    Log-concavity, ultra-log-concavity, and a maximum entropy property of discrete compound Poisson measures

    Full text link
    Sufficient conditions are developed, under which the compound Poisson distribution has maximal entropy within a natural class of probability measures on the nonnegative integers. Recently, one of the authors [O. Johnson, {\em Stoch. Proc. Appl.}, 2007] used a semigroup approach to show that the Poisson has maximal entropy among all ultra-log-concave distributions with fixed mean. We show via a non-trivial extension of this semigroup approach that the natural analog of the Poisson maximum entropy property remains valid if the compound Poisson distributions under consideration are log-concave, but that it fails in general. A parallel maximum entropy result is established for the family of compound binomial measures. Sufficient conditions for compound distributions to be log-concave are discussed and applications to combinatorics are examined; new bounds are derived on the entropy of the cardinality of a random independent set in a claw-free graph, and a connection is drawn to Mason's conjecture for matroids. The present results are primarily motivated by the desire to provide an information-theoretic foundation for compound Poisson approximation and associated limit theorems, analogous to the corresponding developments for the central limit theorem and for Poisson approximation. Our results also demonstrate new links between some probabilistic methods and the combinatorial notions of log-concavity and ultra-log-concavity, and they add to the growing body of work exploring the applications of maximum entropy characterizations to problems in discrete mathematics.Comment: 30 pages. This submission supersedes arXiv:0805.4112v1. Changes in v2: Updated references, typos correcte
    corecore