165 research outputs found

    Adaptive random neighbourhood informed Markov chain Monte Carlo for high-dimensional Bayesian variable selection

    Get PDF
    We introduce a framework for efficient Markov chain Monte Carlo algorithms targeting discrete-valued high-dimensional distributions, such as posterior distributions in Bayesian variable selection problems. We show that many recently introduced algorithms, such as the locally informed sampler of Zanella (J Am Stat Assoc 115(530):852–865, 2020), the locally informed with thresholded proposal of Zhou et al. (Dimension-free mixing for high-dimensional Bayesian variable selection, 2021) and the adaptively scaled individual adaptation sampler of Griffin et al. (Biometrika 108(1):53–69, 2021), can be viewed as particular cases within the framework. We then describe a novel algorithm, the adaptive random neighbourhood informed sampler, which combines ideas from these existing approaches. We show using several examples of both real and simulated data-sets that a computationally efficient point-wise implementation (PARNI) provides more reliable inferences on a range of variable selection problems, particularly in the very large p setting

    Adequacy of neural networks for wide-scale day-ahead load forecasts on buildings and distribution systems using smart meter data

    Get PDF
    Power system operation increasingly relies on numerous day-ahead forecasts of local, disaggregated loads such as single buildings, microgrids and small distribution system areas. Various data-driven models can be effective predicting specific time series one-step-ahead. The aim of this work is to investigate the adequacy of neural network methodology for predicting the entire load curve day-ahead and evaluate its performance for a wide-scale application on local loads. To do so, we adopt networks from other short-term load forecasting problems for the multi-step prediction. We evaluate various feed-forward and recurrent neural network architectures drawing statistically relevant conclusions on a large sample of residential buildings. Our results suggest that neural network methodology might be ill-chosen when we predict numerous loads of different characteristics while manual setup is not possible. This article urges to consider other techniques that aim to substitute standardized load profiles using wide-scale smart meters data
    • …
    corecore