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Abstract
We introduce a framework for efficient Markov chain Monte Carlo algorithms targeting discrete-valued high-dimensional
distributions, such as posterior distributions in Bayesian variable selection problems. We show that many recently introduced
algorithms, such as the locally informed sampler of Zanella (J Am Stat Assoc 115(530):852–865, 2020), the locally informed
with thresholded proposal of Zhou et al. (Dimension-free mixing for high-dimensional Bayesian variable selection, 2021)
and the adaptively scaled individual adaptation sampler of Griffin et al. (Biometrika 108(1):53–69, 2021), can be viewed as
particular cases within the framework. We then describe a novel algorithm, the adaptive random neighbourhood informed
sampler, which combines ideas from these existing approaches. We show using several examples of both real and simulated
data-sets that a computationally efficient point-wise implementation (PARNI) provides more reliable inferences on a range
of variable selection problems, particularly in the very large p setting.

Keywords Bayesian computation · Variable selection · Spike-and-slab priors · Markov chain Monte Carlo · Random
neighbourhood samplers · Locally informed Metropolis-Hastings schemes

1 Introduction

Despite their long history, linear regression models remain a
key building block of many present-day statistical analyses.
In the modern setting, practitioners not only show interest in
making good predictions but also intend to investigate under-
lying low-dimensional structure based on the belief that only
a small subset of predictors play a crucial role in predicting
the response. These problems can be addressed by variable
selection. A variable selection method is an automatic pro-
cedure that selects the best (small) subset of covariates that
explains most of the variation in the response (Chipman et al.
2001). Frequentist approaches focus on model comparisons
through information criteria or point estimates, using e.g.
maximum penalised likelihood under sparsity assumptions
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(Hastie et al. 2015). Alternatively the Bayesian approach can
be taken by imposing an appropriate prior on all possible
models and computing the posterior.

We consider Bayesian variable selection (BVS) with
spike-and-slabpriors (Mitchell andBeauchamp1988),which
lead to natural uncertainty measures such as posterior model
probabilities and marginal posterior variable inclusion prob-
abilities. Suppose a linear regression model with p candidate
covariates is given, we focus on a random variable γ ∈ � =
{0, 1}p where γ j = 1 indicates that the j-th covariate is
included in the model. The exact posterior distribution of γ

is challenging to compute, and when p > 30 Markov chain
Monte Carlo (MCMC) algorithms are typically used to esti-
mate posterior summaries of interest (George andMcCulloch
1993; Chipman et al. 2001). Garcia-Donato and Martinez-
Beneito (2013) discuss the use of the Gibbs sampler whereas
Madigan et al. (1995) (MC3) and Brown et al. (1998) (Add-
Delete-Swap) propose random-walk Metropolis-Hastings
algorithms. Yang et al. (2016) provide conditions on the the
Add-Delete-Swap algorithm for rapid mixing in the sense
that the mixing time grows at most polynomially in p under
some mild conditions on the posterior distributions. These
approaches can, however, suffer from an unexpectedly long
mixing time and therefore slow convergence when p is
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large. For this reason, alternative informed MCMC schemes
have gained popularity for problems with discrete parameter
spaces (having already achieved prominence in the continu-
ous setting). Informed MCMC schemes are those in which
the Metropolis-Hastings proposal exploits some informa-
tion about the target distribution. Intuitively, the success of
informed proposals relies on avoiding models with low pos-
terior model probabilities (Zhou et al. 2021). Titsias and Yau
(2017) describe the Hamming ball sampler (HBS) in which
models are proposed in proportion to their locally-truncated
posterior probability within a Hamming ball neighbourhood.
Zanella and Roberts (2019) consider a Tempered Gibbs sam-
pler (TGS), which involves importance sampling and more
frequently updates components with lower conditional dis-
tributions. A more general class of locally informed and
balanced proposals is introduced by Zanella (2020). These
locally balanced proposals can be obtained by weighting a
base kernel using a balancing function, which is a function
of the posterior distribution that satisfies a certain func-
tional property. The base kernel is typically concentrated on
a neighbourhood of the current state, resulting in a proposal
that is informedandbalancedusing “local” information about
the posterior. The author shows that a random walk proposal
is asymptotically dominated by its locally balanced counter-
part in the Peskun sense as dimensionality increases under
mild conditions on the target distribution (Peskun 1973; Tier-
ney 1998). Zhou et al. (2021) present a Locally Informed and
Thresholded proposal (LIT) which replaces the balancing
function by a thresholded weighting function (i.e. a thresh-
olding function). The LIT scheme is closely connected to the
locally balanced proposal because the thresholding function
behaves like a flexible composition of globally and locally
balanced functions. This novel scheme has been shown to
have a dimension-free mixing time bound under similar con-
ditions as in Yang et al. (2016). For other developments
concerning locally informed proposals, see e.g. Livingstone
and Zanella (2019); Gagnon (2021); Power and Goldman
(2019).

Since the posterior distribution is discrete-valued, the
above random-walk or informed MCMC schemes can be
viewed as neighbourhood samplers. A neighbourhood sam-
pler is an MCMC scheme which can be decomposed into
two stages: (i) construct a neighbourhood that is a set of
states (models) around the current state (model); (ii) propose
a new state (model) within the neighbourhood constructed in
stage (i). For example, theMC3 and locally balanced schemes
propose a new model on an identical neighbourhood which
consists of models which only differ from the current model
in 1 position (i.e. a Hamming neighbourhood), whereas their
second stage is a random walk and an informed proposal
respectively. The LIT algorithm of Zhou et al. (2021) is
similar to the locally balanced scheme whereas it takes an
identical neighbourhood generation mechanism to an Add-

Delete-Swap scheme but its second stage uses a thresholding
function. The design of the neighbourhoods is a crucial factor
to the performance of MCMC schemes, especially in those
informed schemes for two major reasons. The first reason is
the “quality” of neighbourhood in the sense that we should
generate neighbourhoods including many promising mod-
els. Encouraging better quality neighbourhood construction
will improve the mixing of the chain and avoid it getting
struck in some low probability models. The second reason
is the size of the neighbourhood. Informed MCMC schemes
often mix quickly and have good convergence properties,
but the computation of each transition can be prohibitively
expensive. For example, the number of models in the locally
balanced proposal will be at least linear in p and will tend to
include large numbers of unimportant variables under stan-
dard sparsity assumptions. Neighbourhoods have also been
considered previously in the context of stochastic search.
Hans et al. (2007) describe a novel Shotgun Stochastic Search
(SSS) algorithm whilst Chen et al. (2016) consider a paired-
movemultiple-try stochastic search algorithm.Both schemes
identify a subset of probable models and move to new mod-
els within the neighbourhood according to posterior model
probabilities.

In this paper we propose a method which generates good
neighbourhoods while controlling computational cost with
large p by introducing a framework for constructing flexible
and efficientMCMCalgorithms based on random neighbour-
hoods. We refer to the scheme as a random neighbourhood
sampler and show that if they are well-constructed such
schemes can lead to Markov chains with good convergence
properties and controlled computational cost per iteration.
Our method uses an adaptive scheme to achieve a flexi-
ble neighbourhood generatingmechanism. AdaptiveMCMC
is a sub-class of algorithms in which tuning parameters
are automatically updated “on the fly” (e.g. Andrieu and
Thoms 2008). Several adaptive methods have been devel-
oped in the context ofBVS (Ji andSchmidler 2013; Lamnisos
et al. 2009, 2013). We build on Griffin et al. (2021) who
develop the Adaptively-Scaled Individual Adaptation sam-
pler (ASI), which is able to adapt to the importance of each
candidate covariate and propose multiple swaps per itera-
tion in high-dimensional settings. We show that the ASI
algorithm is a random neighbourhood sampler whose sec-
ond stage is a random-walk proposal in this paper. Based on
this discovery, we design a random neighbourhood informed
sampler with the same neighbourhood generating mecha-
nism as ASI but replace its second stage by an informed
within-neighbourhood proposal. To illustrate the power of
the framework, we develop a new MCMC algorithm for
Bayesian variable selection in linear regression, namely
the Point-wise Adaptive Random Neighbourhood Informed
(PARNI) sampler. This combines the strengths of ASI for
good neighbourhood generation and locally informed pro-
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posals for avoiding random walk behaviour. An extensive
set of empirical results on both real and simulated data-sets
show that the PARNI sampler yields good estimates for pos-
terior quantities of interest and performs particularly well for
well-known large p examples such as the PCR (p = 22, 575)
and SNP (p = 79, 748) data-sets.

The rest of this paper is structured as follows. In Sect. 2,we
review BVS for the linear model along with prior specifica-
tion. We also briefly describe both the ASI scheme of Griffin
et al. (2021) and the locally informed methods of Zanella
(2020) and Zhou et al. (2021). In Sect. 3, we characterise the
construction of random neighbourhood proposals and illus-
trate that locally informed proposals and the ASI scheme fall
within this framework. Section 4 presents the construction
of adaptive random neighbourhood and informed samplers.
Following this structure, we present the ARNI and PARNI
samplers. In addition, we establish both the ergodicity and
a strong law of large numbers for the PARNI algorithm. We
implement the PARNI sampler in Sect. 5 on both simulated
and real data. Comparisons between the PARNI samplers and
other state-of-the-art MCMC algorithms are carried out to
showcase their capacity and efficiency. In Sect. 6 we discuss
limitations and possible future work. Detailed explanations
and proofs are provided in the supplement.

2 Background

2.1 Bayesian variable selection for the linear
regressionmodel

Consider a data-set {(yi , xi1, ..., xip)}ni=1, where the vector
y = (y1, ..., yn) ∈ R

n is called the response variable and
each x j = (x1 j , ..., xnj ) is one of p predictor variables or
covariates. The variable selection problem is concerned with
finding the best q � p covariates that are most associated
with the response. Assuming that each regression includes
an intercept, then there are 2p possible models that can be
formulated to predict the response.We refer to eachmodel as
Mγ where the models are indexed by the indicator variable
γ = (γ1, . . . , γp) ∈ � = {0, 1}p, where γ j = 1 if the j-th
variable is included in model Mγ and γ j = 0 otherwise. We
refer to � as model space and let pγ := ∑

j γ j . The model
Mγ associated with γ is then

y = α1n + Xγ βγ + ε (1)

where ε ∼ Nn(0, σ 2 In), y is an n-dimensional response
vector, Xγ is an (n × pγ ) design matrix which consists of
the “active” variables in γ (those for which γ j = 1), α is an
intercept term and βγ ∈ R

pγ . In the Bayesian framework,
we consider a commonly-used conjugate prior specification

p(α) ∝ 1, βγ |γ, σ 2 ∼ N (0, gσ 2Vγ ), p(σ 2) ∝ σ−2,

p(γ ) = h pγ (1 − h)p−pγ .

For simplicity, we can remove the intercept term α by cen-
tering y and X j for all j . Chipman et al. (2001) highlight
that this method can be motivated from a formal Bayesian
perspective by integrating out the coefficients corresponding
to those fixed regressors with respect to an improper uniform
prior. The covariancematrixVγ is often chosen as (XT

γ Xγ )−1

(a g-prior) or identity matrix Ipγ (an independent prior).
In what follows, we will focus on the independence prior
where Vγ = Ipγ . For both of these choices, the marginal
likelihood p(y|γ ) is analytically tractable. Suitable values
for the global scale parameter g are suggested in Fernandez
et al. (2001). It can also be driven by a hyperprior, yielding
a fully Bayesian model (see Liang et al. (2008) for details).
The hyperparameter h ∈ (0, 1) is the prior probability that
each variable is included in the model. Steel and Ley (2007)
suggest against using fixed h unless strong information is
given, and instead placing a hyperprior on it such as a Beta
prior h ∼ Beta(a, b), leading to a Beta-binomial prior on the
model size. The choices of g and h will be specified later for
each set of data. In the following sections, we will develop
efficient sampling schemes targeting the posterior distribu-
tion π(γ ) ∝ p(y|γ )p(γ ).

Remark 1 For a linear regression model with p candidate
covariates, it has been shown that spike-and-slab priors often
lead to posterior consistency in the sense that the posterior
collapses to aDiracmeasure on the truemodel asmore obser-
vations are gathered (Fernandez et al. 2001; Liang et al. 2008;
Yang et al. 2016), even in high-dimensional setting where p
grows with n (Shang and Clayton 2011; Narisetty and He
2014). Another approach is to employ continuous shrinkage
priors (e.g. Polson and Scott 2010; Griffin and Brown 2021),
which only give posterior inference on regression coefficients
but can result in a more computationally tractable posterior
distribution.

2.2 Adaptively scaled individual adaptation
algorithm

Griffin et al. (2021) introduce a scalable adaptive MCMC
algorithm targeting high-dimensional BVS posterior distri-
butions together with a method that automatically updates
the tuning parameters. They consider the class of proposal
kernels

qη(γ, γ ′) =
p∏

j=1

qη, j (γ j , γ
′
j ) (2)

whereη = (A, D) = (A1, . . . , Ap, D1, . . . , Dp),qη, j (γ j =
0, γ ′

j = 1) = A j and qη, j (γ j = 1, γ ′
j = 0) = Dj , with
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for i = 1 to i = N do
for l = 1 to l = L do

Sample γ l,′ ∼ qζ (i)η(i) (γ l,(i), ·) as in (2) and U ∼ U (0, 1);

If U < αζ(i)η(i) (γ l,(i), γ l,′) as in (3), then γ l,(i+1) = γ l,′, else
γ l,(i+1) = γ l,(i);

end for
Update π̂

(i+1)
j as in (5), set π̃

(i+1)
j = π0 + (1 − 2π0)π̂

(i+1)
j for

j = 1, . . . , p;
Update ζ (i+1) as in (7);

Update A(i+1)
j = min

{
1, π̃ (i+1)

j /(1 − π̃
(i+1)
j )

}
;

Update D(i+1)
j = min

{
1, (1 − π̃

(i+1)
j )/π̃

(i+1)
j

}
;

Set η(i+1) = (A(i+1)
j , D(i+1)

j )

end for

Algorithm 1: Adaptively Scaled Individual Adaptation (ASI)

Metropolis-Hastings acceptance probability

αη(γ, γ ′) =
{

1,
π(γ ′)qη(γ

′, γ )

π(γ )qη(γ, γ ′)

}

. (3)

This proposal mainly benefits from two aspects. Firstly,
the flexibility offered by 2p tuning parameters allows the
proposal to be tailored to the data. Secondly, this form of pro-
posal also allows multiple variables to be added or deleted
from the model in a single iteration, which in turn allows the
algorithm to make large jumps in model space.

Griffin et al. (2021) suggest an optimal choice of η =
(A, D) in Peskun sense while assuming that all variables
are independent. If π j denotes the posterior inclusion prob-
ability of the j-th regressor, the optimal choice of ηopt =
(Aopt, Dopt) is given as

Aopt
j = min

{

1,
π j

1 − π j

}

, Dopt
j = min

{

1,
1 − π j

π j

}

. (4)

The independence assumption is usually violated due to the
correlation between regressors and therefore a scaled pro-
posal with parameters η = ζηopt for a scaling parameter
ζ ∈ (0, 1) is suggested. This scaling parameter ζ controls
the number of variables that differ between the current state
γ and the proposed state γ ′. Smaller values of η can be
used to avoid overly ambitious moves with low probabil-
ities of acceptance and so control the average acceptance
rate. They also suggestmultiple chain accelerationwith com-
mon adaptive parameters since runningmultiple independent
chains with shared adaptive parameters can facilitate the
convergence of the adaptive parameters (Craiu et al. 2009).
This phenomenon is demonstrated in their simulation stud-
ies where the schemes with 25 multiple chains outperform
the schemes with only 5 multiple chains in terms of relative
efficiency especially for large p data-sets. Suppose L chains
are used and let γ l,(i) and γ l,′ denote the current state and
proposal for the l-th chain respectively.Wealso defined a vec-
tor γ− j = (γ1, . . . , γ j−1, γ j+1, . . . , γp) to denote the vector

of γ without γ j . The tuning parameters of the proposal are
updated on the fly using a Rao-Blackwellised estimate of the
posterior inclusion probability of the j-th regressor which,
at the N -th iteration, is

π̂
(N )
j = 1

NL

N∑

i=1

L∑

l=1

π(γ j = 1, γ l,(i)
− j |y)

π(γ j = 1, γ l,(i)
− j |y) + π(γ j = 0, γ l,(i)

− j |y)
.

(5)

The use of the Rao-Blackwellised estimates of the poste-
rior inclusion probabilities can swiftly distinguish unim-
portant variables. Griffin et al. (2021) show how these
Rao-Blackwellised estimates can be calculated inO(p) oper-
ations which leads to a scalable MCMC scheme in large p
BVS problems. At the i-th iteration, the proposal parameters
are η = ζ (i) × η(i) where η(i) = (A(i), D(i)),

A(i)
j = min

{

1,
π̂

(i)
j

1 − π̂
(i)
j

}

, D(i)
j = min

{

1,
1 − π̂

(i)
j

π̂
(i)
j

}

(6)

and the scaling parameter ζ (i) is tuned using the Robbins-
Monro scheme

logitεζ
(i+1) = logitεζ

(i) + φi

L

L∑

l=1

(αζ (i)η(i) (γ
l,(i), γ l,′) − τ)

(7)

for a target rate of acceptance τ and the mapping logitε :
(ε, 1 − ε) → R is a modified logistic function (or logit
function) defined by

logitε(x) = log(x − ε) − log(1 − x − ε) (8)

for some small ε ∈ (0, 1/2). The full description of the sam-
pler is given in Algorithm 1. The resulting algorithm is called
Adaptively Scaled Individual Adaptation (ASI). Griffin et al.
(2021) establish the π -ergodicity and a strong law of large
numbers for the ASI sampler.

Remark 2 The performance of the ASI algorithm is crucially
related to the choice of appropriate values of parameters and
hyperparameters. The parameters η(i) and ζ (i) are updated
on the fly. The hyperparameters are chosen as follows:
φi = i−0.7, τ = 0.234, ε = 0.1/p and π0 = 0.001. This
hyperparameter specification is suggested by Griffin et al.
(2021) and they shows that it works well in general based on
the empirical performances. See their paper for the discus-
sion on the choice of hyperparmeters.
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2.3 Locally informed proposals for discrete-valued
variables

In continuous sample space, MCMC algorithms often utilise
gradients of the target distribution, e.g. the Metropolis-
adjusted Langevin algorithm (Grenander and Miller 1994)
and Hamiltonian Monte Carlo (Duane et al. 1987). These
methods are defined on continuous spaces but Zanella (2020)
develop a class of informed proposals as an analog for dis-
crete spaces. The approach assumes that we can define a
random walk Metropolis proposal kernel Q on a neighbour-
hood N ⊂ � with mass function q. In this paper, we consider
the following construction of informed proposals that are
described by Zanella (2020) as follows

qg(γ, γ ′) =
⎧
⎨

⎩

g
(

π(γ ′)
π(γ )

)
q(γ,γ ′)

Zg(γ )
, γ ∈ N

0, otherwise
(9)

where g : [0,∞) → [0,∞) is a monotone continuous
weighting function and Zg(γ ) is a normalising constant such
that

Zg(γ ) =
∑

γ ′∈N
g

(
π(γ ′)
π(γ )

)

q(γ, γ ′). (10)

The choice of the weighting function g is crucial for the
performance of Qg since it determines how the target distri-
bution π drives the proposal.When g is the constant function
g(t) = 1, the resulting informed proposal Qg will coin-
cide with the base kernel Q and this is referred to as a
non-informed proposal. Zanella (2020) mainly discussed the
locally balanced proposals which are formed by the balanc-
ing functions that satisfy g(t) = tg(1/t) for all t > 0. The
locally balanced proposals are approximately π -reversible if
Q is restricted to local moves. The neighbourhoods are nor-
mally chosen to be N = Hm(γ ) := {γ ′ ∈ �|dH (γ ′, γ ) ≤
m} for which dH (·, ·) denotes the measure of Hamming dis-
tance (i.e. dH (γ, γ ′) = ∑p

j=1 |γ j − γ ′
j |) and the proposal

kernel Q would be a uniform distribution on the neighbour-
hood N . When m is taken to be 1, the base kernel Q is
identical to theMC3 sampler. In addition, taking g as the iden-
tity function (i.e. g(t) = t) will lead to a globally balanced
proposal Qg where Qg is π -reversible when the neighbour-
hood N is the whole sample space.

Theorem 5 of Zanella (2020) shows that using a uni-
form based kernel on neighbourhoodHm(γ ) combined with
a balancing function g as described above will be asymp-
totically optimal relative to the un-informed or globally
balanced proposals, in terms of Peskun ordering, as the
dimensionality goes to infinity under the condition that
supγ∈�,γ ′∈N Zg(γ )/Zg(γ

′) → 1 holds. However, for a
Bayesian variable selection problem,Zhou et al. (2021) argue

that the behavior of the function γ → Zg(γ ) is difficult
to predict and the assumption may not hold. They therefore
suggest amodifiedweighting functionwith upper- and lower-
bounds

g(t) = min{max{pl , t}, pL} (11)

where p is the total number of regressors and −∞ < l <

L < ∞ are some constants. In what follows, the weighting
function in (11) is referred to as the thresholding function.
The thresholding function is flexible in the sense that it
includes globally and locally balanced functions for specific
values of l and L .

Their Locally informedwith Thresholded (LIT) algorithm
works on neighbourhoods derived from the Add-Delete-
Swap scheme and allows the values of l and L to change
with the type of move. Under the conditions that the poste-
riormass concentrations on a small set and the chain starts at a
model that is not too far from the true data-generating model,
they prove that the LIT algorithm can achieve a dimension-
free mixing rate if the parameters of the LIT algorithm are
properly selected.

3 Random neighbourhood samplers and the
ASI algorithm

Let us recall the idea of a neighbourhood sampler from
Sect. 1. In general, the neighbourhoods can be random and
tailored to the target distribution π . This is referred to as
a random neighbourhood sampler. In this section, we will
properly present the randomneighbourhood sampler in detail
and show using Theorem 1 that the ASI sampler is a random
neighbourhood sampler.

3.1 Random neighbourhood samplers

We consider a framework for constructing Metropolis-
Hastings proposals to sample fromπ(γ ) in which a new state
is proposed within a random neighbourhood around the cur-
rent state. The random neighbourhoods are generated using
an auxiliary variable k as a neighbourhood indicator. This
auxiliary variable k is a discrete random variable defined on
a countable setK such the probability of generating a neigh-
bourhood N = N (γ, k) is the same as the probability of
generating k (i.e. p(N |γ ) = p(k|γ )). Suppose γ is the cur-
rent state and Qk is a Metropolis-Hastings proposal kernel
(conditioned on k) with mass function qk . A new state γ ′
is drawn from kernel Qk after a value of k has been gen-
erated. In updating k at each iteration, we usually consider
proposing a new state k′ conditional on the current state k
through a deterministic bijection ρ : K → K such that
k′ = ρ(k). The mapping ρ should be an involution which
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is a self-inverse function which satisfies ρ(ρ(k)) = k. We
call an MCMC algorithm that uses the above construction
to generate Metropolis-Hastings proposals a random neigh-
bourhood sampler. The followings are some examples of
random neighbourhood samplers.

Example 1 (Samplers with non-stochastic neighbourhoods)
In fact, samplers with non-stochastic neighbourhoods are

also random neighbourhood samplers where the specific
neighbourhoods are generated with constant probability of
1 at each state γ . In such cases, the choices of k and ρ can
be arbitrary. For instance, the MC3 sampler can be viewed as
a random neighbourhood sampler for which the neighbour-
hood N consists ofmodels that are 1-Hamming distance from
γ . In particular, the locally balanced samplers of Zanella
(2020) also belong to this class with neighbourhood N as
defined in Sect. 2.3.

Example 2 (Add-Delete-Swap sampler and LIT proposal)
In each iteration of an Add-Delete-Swap (ADS) sam-

pler, a strategy from “addition”, “deletion” and “swap” is
uniformly chosen which implies that the auxiliary variable
k is uniformed distributed over the sample space K =
{“addition”, “deletion”, “swap”} and therefore construct a
neighbourhood N (γ, k) as in Yang et al. (2016). A new state
γ ′ is uniformly proposed from N (γ, k). The corresponding
mapping ρ is then a function that sends the auxiliary variable
to an opposite strategy, e.g. it sends “addition” to “deletion”
and vice versa. Note that the opposite strategy of “swap” is
itself. The Locally Informed and Thresholded (LIT) proposal
by Zhou et al. (2021) has an identical neighbourhood con-
struction to an ADS sampler but it proposes a new model
using an informed weighted proposal that uses weighting
functions bounded above and below.

Example 3 (Hamming ball sampler)
A Hamming ball sampler with radius m is described by

Titsias and Yau (2017). This algorithm selects a neighbour-
hood from Hm(γ ) ⊂ �, which is the set of states at most
m-Hamming distance away from γ . The auxiliary variable
k is equivalent to U in their design in which k is uniformly
distributed over the set K = Hm(γ ) and a neighbourhood
N (γ, k) = Hm(k) is used to draw a new state. The Hamming
ball sampler proposes a new state according to the truncated
posteriormodel probability in the neighbourhood N (γ, k). In
this scheme, the mapping ρ is the identity function, meaning
the same auxiliary variable is used in reversed moves.

The full update of a random neighbourhood sampler uses
the three stages below:

(i) (Neighbourhood construction) Sample a neighbour-
hood indicator k from p(·|γ ), and construct the cor-
responding neighbourhood N (γ, k);

(ii) (Within-neighbourhoodproposal) Propose anewmodel
γ ′ in N (γ, k) according to Qk(γ, ·);

(iii) (Accept/reject step) Calculate the probability of the
reverse move, qρ(k)(γ

′, γ ), by constructing the reverse
neighbourhood N (γ ′, ρ(k)). Move to the new state
γ ′ with probability αk(γ, γ ′) where αk(γ, γ ′) is the
Metropolis-Hastings acceptance probability

αk(γ, γ ′) = min

{

1,
π(γ ′)p(ρ(k)|γ ′)qρ(k)(γ

′, γ )

π(γ )p(k|γ )qk(γ, γ ′)

}

.

(12)

Throughout this article, we refer to the above three stages
as neighbourhood construction, within-neighbourhood pro-
posal and accept/reject step respectively. To preserve the
reversibility of the chain, it is better to design a neighbour-
hood generation scheme where the law

γ ′ ∈ N (γ, k) ⇐⇒ γ ∈ N (γ ′, ρ(k)) (13)

holds for any γ , γ ′ and k. Upon this law, we assume that the
condition

p(k|γ )qk(γ, γ ′) > 0 ⇐⇒ p(ρ(k)|γ )qρ(k)(γ
′, γ ) > 0

(14)

is satisfied. This assumption is a generalisation of the paired-
move strategy in Chen et al. (2016) and it results in the
correctness and reversibility of such a scheme through the
following proposition.

Proposition 1 A random neighbourhood sampler is
π -reversible provided that condition (14) holds, p(k|γ ) is a
valid probability measure onK and qk(γ, γ ′) is a valid prob-
ability measure on neighbourhood N (γ, k) for all γ ∈ � and
k ∈ K.

Remark 3 To generalise the framework of random neigh-
bourhood samplers, it is possible to use a continuous auxiliary
variable k. In such a case, the acceptance probability in (12)
should include the Jacobian term.

We show in the next part that the ASI sampler is also a
random neighbourhood sampler. Unlike the locally balanced
proposals, it focuses on constructing sophisticated random
neighbourhoods which are more likely to contain promising
models and employs a random walk within-neighbourhood
proposal.

3.2 Another take on the ASI scheme

It is not straightforward to observe that the ASI sampler is
a random neighbourhood sampler, however we show below
that, in fact, it can be. To do so, we introduce a random
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neighbourhood sampler, the Adaptive Random Neighbour-
hood (ARN) sampler, and prove that the ARN and ASI
samplers are equivalent if they share some common adap-
tive parameters. The ARN sampler follows a random walk
within neighbourhood but, compared to the locally informed
approach, putsmore efforts into neighbourhood construction.

We consider a random neighbourhood sampler with
algorithmic tuning parameter θ = (ξηopt, ω) ∈ (ε, 1 −
ε)2p+1 := �

2p+1
ε and a small ε ∈ (0, 1/2), where ηopt

is given in (4), and the tuning parameters ξ and ω are
used in the random neighbourhood construction and the
within-neighbourhood proposal respectively. In the random
neighbourhood construction, the neighbourhood indicator
variable k = (k1, . . . , kp) ∈ K = {0, 1}p is generated from
the distribution

pRN
ξηopt

(k|γ ) =
p∏

j=1

pRN
ξηopt, j (k j |γ j ) (15)

where pRN
ξηopt, j (k j = 1|γ j = 0) = ξ Aopt

j and pRN
ξηopt, j (k j =

1|γ j = 1) = ξDopt
j . This is equivalent to the ASI proposal

in (2) where k j = 1 if and only if γ j = γ ′
j . A neighbourhood

N (γ, k) is obtained from γ and k for which γ is the “centre”
of N (γ, k) and k indicates the possible indices altered fromγ .
These tuning parameters ξ and ηopt are abortively updated on
the fly. For any γ ∗ ∈ N (γ, k), k j = 0 implies that γ ∗

j = γ j .
This identity can be used to state a formal definition of the
neighbourhood N (γ, k) as

N (γ, k) = {γ ∗ ∈ �|γ j = γ ∗
j , ∀k j = 0}.

The neighbourhood contains 2pk models where pk is the
number of 1s in k (i.e. pk := ∑p

j=1 k j ). The parameter ξ

affects the pk and therefore controls neighbourhood size. So
we call ξ the neighbourhood scaling parameter.

The mapping ρ is chosen to be the identity function.
The within-neighbourhood proposal in this adaptive random
neighbourhood scheme is also based on the same proposal
in (2) over the neighbourhood N (γ, k). It can be charac-
terised as choosing the variables to be added or deleted from
the model by thinning from within the set { j | k j = 1} with
the thinning probability set to be ω ∈ (0, 1). We refer to this
parameter as the uniquewithin-neighbourhood proposal tun-
ing parameter. A larger value of ω increases the probability
of proposing γ ′ further away from γ in Hamming distance.
This can be written formally as the proposal in (2) with tun-
ing parameter ηTHIN = (ATHIN, DTHIN) = (ωk, ωk), that is
ATHIN
j = DTHIN

j = ω for k j = 1 and ATHIN
j = DTHIN

j = 0

otherwise. The resulting proposal is termed as qTHINω,k which
is formulated as

Sample k ∼ pRN
ξηopt

(·|γ ) as in (15);

Sample γ ′ ∼ qTHINω,k (γ, ·) as in (16) and U ∼ U (0, 1);

if U < αARN
θ,k (γ, γ ′) as in (17), then accept γ ′

Algorithm 2: Adaptive Random Neighbourhood sampler
(ARN)

qTHINω,k (γ, γ ′) =
p∏

j=1

qTHINω,k j (γ j , γ
′
j ), (16)

whereqTHINω,1 (γ j , 1−γ j ) = ω andqTHINω,0 (γ j , 1−γ j ) = 0.The

proposal qTHINω,k is symmetric and only generates new states
inside the neighbourhood N (γ, k). This is because the prob-
abilities of proposing flips on coordinates other than j such
that k j = 1 are 0. The scheme is completed by accepting or
rejecting the proposal using a standard Metropolis-Hastings
acceptance probability

αARN
θ,k (γ, γ ′) =

{

1,
π(γ ′)pRN

ξηopt
(k|γ ′)qTHINω,k (γ ′, γ )

π(γ )pRN
ξηopt

(k|γ )qTHINω,k (γ, γ ′)

}

.

(17)

Remark 4 An alternative formulation to (16) in terms of
Hamming distance between γ and γ ′ is

qTHINω,k (γ, γ ′) = ωdH (γ,γ ′)(1 − ω)pk−dH (γ,γ ′)
I{γ ′ ∈ N (γ, k)}

=
(

ω

1 − ω

)dH (γ,γ ′)
(1 − ω)pk I{γ ′ ∈ N (γ, k)}

(18)

where dH (γ, γ ′) is the measure of Hamming distance
between two models γ and γ ′.

Remark 5 When ω is chosen to be 1/2, the
within-neighbourhood proposal qTHINω=1/2,k is uniformly dis-
tributed over the local neighbourhood N (γ, k).

Algorithm 2 describes how a new state γ ′ is proposed
using the ARN scheme. We indicate the transition kernel
by pARNθ and the corresponding sub-transition kernel condi-
tional on k by pARNθ,k . They obey the relationship

pARNθ (γ, γ ′) =
∑

k∈K
pARNθ,k (γ, γ ′).

The following proposition helps to show that the ARN
sampler is π -reversible.

Proposition 2 For any tuning parameter θ = (η, ω) ∈
�

2p+1
ε = (ε, 1 − ε)2p+1, the condition (14) holds, the con-

ditional distribution of k, pRNη (k|γ ), within the ARN sampler
is a valid distribution on K = {0, 1}p. In addition, for any
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γ ∈ � and k ∈ K, the within-neighbourhood proposal of the
ARN sampler qTHINω,k (γ, γ ′) is also a valid probability distri-
bution on N (γ, k).

Proposition 1 together with Proposition 2 show that the
ARN transition kernel is π -reversible and therefore gener-
ates samples that preserve the target distribution π . In fact
ARN and ASI are mathematically equivalent provided that
the tuning parameter choices are made in a prescribed man-
ner. To see this suppose that the tuning parameters of both the
ARN and ASI schemes are fixed and share the same tuning
parameter η. The following theorem shows that their transi-
tion probabilities from γ to γ ′ are equal when ζ = ξ × ω

holds.

Theorem 1 Suppose that η ∈ �
2p
ε and ζ , ξ , ω ∈ �ε for

small ε ∈ (0, 1/2), pARN(ξη,ω) and pASIζη are transition kernels
of the ARN and ASI schemes respectively. If ζ = ξ × ω and,
then

pARN(ξη,ω)(γ, γ ′) = pASIζη (γ, γ ′) (19)

holds for any γ and γ ′ ∈ �.

In addition we deduce the following corollary.

Corollary 1 Setting ξ1 × ω1 = ξ2 × ω2 implies

pARN(ξ1η,ω1)
(γ, γ ′) = pARN(ξ2η,ω2)

(γ, γ ′)

for any γ and γ ′ ∈ �.

Corollary 1 shows that two ARN kernels with different
tuning parameters coincide in probability if the products of
the neighbourhood scaling parameter ξ andproposal thinning
parameterω are equal. This corollary also suggests that mag-
nitudes of ξ and ω can shift to each other without modifying
the resulting proposal as long as their product preserves.

4 Adaptive random neighbourhood and
informed samplers

It should be clear from the above discussion that both the
locally informed proposals and ASI schemes can be viewed
as random neighbourhood samplers, and that the former
focuses on selecting good proposals within a neighbourhood,
while the latter focuses on constructing neighbourhoods
of models which are more likely to be accepted in the
Metropolis-Hastings update. Our main methodological con-
tribution is to design a random neighbourhood sampler for
which both the neighbourhood construction and within-
neighbourhood proposal are designed in an informed way.
We therefore consider using an adaptive random neighbour-
hood approach to construct neighbourhoods, followed by

a locally informed approach to select a proposal from this
neighbourhood.

The advantages of combining the two schemes in this
manner are worth highlighting. A key strength of ASI is
that generating proposals is computationally cheap, but when
components of the posterior distribution are highly correlated
then the assumption of independence that is embedded into
the proposal generation can lead to overly ambitious moves
that will be rejected. To combat this, the scaling parameter
must be used to control the acceptance rate, but in the pres-
ence of high correlation this can lead to smallmoves and slow
mixing. The locally informed sampler can cope well with
high levels of correlation in the posterior distribution, but
the (un-informed) neighbourhood in high-dimensions often,
either contain no sensible models, or be so large that the
cost of computing all of the posterior probability of models
within it becomes prohibitive. Combining the two schemes
is therefore an attractive proposition, as an intelligent neigh-
bourhood that is also not too large can be constructed using
ASI, and then correlation can be controlled for at the second
stage by choosing the within-neighbourhood proposal using
the locally informed approach.

Wegive the details of this adaptive randomneighbourhood
and informed sampler below, which we call the Adaptive
Random Neighbourhood Informed (ARNI) sampler. After
this we define the point-wise ARNI (PARNI) scheme, which
enjoys the benefits of ARNI but with much lower computa-
tional cost.

4.1 Adaptive random neighbourhood informed
algorithm

Wefirst describe a general construction of the random neigh-
bourhood informed proposals. Suppose a randomneighbour-
hood sampler is given with neighbourhood indicator variable
k ∈ K and a update mapping ρ together with a within-
neighbourhood proposal kernel Qk . The variable k follows
a conditional distribution p(k|γ ) whereas the proposal Qk

produces a new state γ ′ within neighbourhood N (γ, k) in an
uninformed manner. We consider a class of random neigh-
bourhood informed proposals Qg,k with mass function

qg,k(γ, γ ′) =

⎧
⎪⎨

⎪⎩

g

(
π(γ ′)p(ρ(k)|γ ′)qρ(k)(γ

′,γ )

π(γ )p(k|γ )qk (γ,γ ′)

)

qk (γ,γ ′)
Zg,k(γ )

, γ ∈ N (γ, k)

0, otherwise

(20)

where g : [0,∞) → [0,∞) is a continuous monotone
weighting function, and Zg,k(γ ) is a normalising constant
defined by
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Zg,k(γ )

=
∑

γ ∗∈N (γ,k)

g

(
π(γ ∗)p(ρ(k)|γ ∗)qρ(k)(γ

∗, γ )

π(γ )p(k|γ )qk(γ, γ ∗)

)

qk(γ, γ ∗).

(21)

The generated new state γ ′ is accepted using theMetropolis-
Hastings rule

αg,k(γ, γ ′) = min

{

1,
π(γ ′)p(ρ(k)|γ ′)qg,ρ(k)(γ

′, γ )

π(γ )p(k|γ )qg,k(γ, γ ′)

}

.

(22)

The proposal collapses to the locally balanced proposal of
Zanella (2020) when the neighbourhood is non-stochastic,
the weighting function g is a balancing function that satisfies
g(t) = tg(1/t) and the within-neighbourhood proposal is
symmetric. In what follows, we combine the above random
neighbourhood informed proposal with the ARN scheme
and develop an Adaptive Random Neighbourhood Informed
(ARNI) proposal that uses an informed proposal at the
within-neighbourhood proposal stage. In the ARNI scheme,
the mapping ρ is chosen to be the identity function where
ρ(k) = k and the within-neighbourhood proposal in Algo-
rithm 2 is replaced by

qARNIθ,k (γ, γ ′) ∝ g

(
π(γ ′)pRN

ξηopt
(k|γ ′)qTHINω,k (γ ′, γ )

π(γ )pRN
ξηopt

(k|γ )qTHINω,k (γ, γ ′)

)

qTHINω,k (γ, γ ′)

= g

(
π(γ ′)pRN

ξηopt
(k|γ ′)

π(γ )pRN
ξηopt

(k|γ )

)

qTHINω,k (γ, γ ′). (23)

for some weighting function g and some parameters θ =
(ξηopt, ω) ∈ �

2p+1
ε = (ε, 1 − ε)2p+1. The last equation

follows since the within-neighbourhood proposal qTHINω,k is

symmetric and therefore qTHINω,k (γ ′, γ )/qTHINω,k (γ, γ ′) = 1
for all γ ′ ∈ N (γ, k). The Metropolis-Hastings acceptance
probability is tailored to the new informed proposal as

αARNI
θ,k (γ, γ ′) = min

{

1,
π(γ ′)pRN

ξηopt
(k|γ ′)qARNIθ,k (γ ′, γ )

π(γ )pRN
ξηopt

(k|γ )qARNIθ,k (γ, γ ′)

}

.

(24)

The optimal choice of informed weighting function is
unclear in the ARNI scheme. The thresholding function is
not appropriate since the neighbourhoods generated byARNI
cannot be divided into the addition and deletion neighbour-
hoods as in the LIT scheme. We therefore recommend to use

a balancing function which satisfies g(t) = tg(1/t) and form
an ARNI balanced proposal.

To boost the convergence of these adaptive tuning param-
eters, the same multiple chain strategy as ASI should be
implemented. In addition to the notations used in ASI, kl,(i)

denotes the neighbourhood indicator variable for the l-chain
at time i . For L multiple chains, the tuning parameters ηopt

are updated following the same scheme of ASI as in (6) and
(7). Two scaling parameters ξ and ω can be updated using
the Robbins-Monro schemes

logitεξ
(i+1) = logitεξ

(i) + φi

L

L∑

l=1

(pkl,(i) − s) (25)

logitεω
(i+1) = logitεω

(i) + φi

L

L∑

l=1

(αl
i − τ) (26)

where pk is the size of k as mentioned previously, s is the
target size of k, αl

i is the acceptance probability at the i th iter-
ation for the l-th chain and τ is the target average acceptance
rate.

Remark 6 For practical convenience, it is often useful to
chose the diminishing sequence φi of the form φi = i−λ

for λ ∈ (1/2, 1) since the condition φi = O(i−λ) is not
be violated by this choice of φi . Choosing λ > 1 would
result in finite adaptation (Roberts and Rosenthal 2007) in
which the adaptation stops after a finite stopping time, and
using λ < 1/2 is uncommon because of finite sample stabil-
ity concerns. We therefore recommend using φi = i−0.7 for
both updating schemes. See Remark 3 in Griffin et al. (2021)
for further discussion.

While the informed proposal is powerful in accelerating
the convergence of the chains, it also introduces extra compu-
tational costs since the posterior probabilities of all models in
a neighbourhood are required. Given a k of size pk , the result-
ing neighbourhood N (γ, k) consists of 2pk models.Although
it is possible to speed up the posterior calculations usingGray
codes as introduced in George andMcCulloch (1997), evalu-
ating 2pk models is still computationally expensive when pk
is very large and leads to an inefficient scheme. One way to
address the issue is to tune the neighbourhood scaling param-
eter to generate neighbourhoods with a desired size, say let
s be 5. In our experience, such control of the size of k comes
at the cost of reduced exploration of the model space and
the ARNI scheme fails to achieve better performance than
ASI. This motivated us to develop a more efficient imple-
mentation of this approach that controls computational cost
but maintains good exploration properties.
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4.2 The PARNI sampler

We consider a point-wise implementation of the ARNI
scheme (for short, the PARNI scheme). This approach is
motivated by the block-wise implementation in Zanella
(2020) and the block design strategy in Titsias and Yau
(2017). Themain idea is that a large neighbourhood is divided
into a series of smaller blocks and the new model is pro-
posed by sequentially adding or deleting variables in each
block. The block design can lead to a significant reduction
in the total number of models considered and so require less
computational effort. vadjustFor instance, suppose that there

are pk non-zero neighbourhood indicator variables, which
are divided into m equally sized blocks. The neighbour-
hoods generated by each blockwill have 2m models.Working
through each block to propose a new state requires evaluating
2m pk/m posteriorvadjust probabilities.As the computational

cost is proportional to the total number ofmodels considered,
the computational cost is largest when m = pk where the
only building block is the entire neighbourhood of N (γ, k).
In contrast, the smallest computational cost occurs when
m = 1 where each block has one variable and therefore
contains two models only. Throughout the section, we con-
sider the latter block design when m = 1 and the resulting
algorithm is the PARNI sampler.

4.2.1 Main algorithm

Wenow formally present thePARNI algorithmand showhow
a newmodel γ ′ is proposed from the currentmodel γ .We use
the same random neighbourhood construction as the ARNI
scheme, in addition, the neighbourhood scaling parameter ξ

is set to be fixed at 1 to indicate that neighbourhood sizes are
not reduced at this stage. In other words the neighbourhoods
are generated with the optimal values ηopt as in (4). After
a neighbourhood N (γ, k) is sampled, we sequentially pro-

pose new models with only 1-Hamming distance differences
inside N (γ, k). We define K = {K1, . . . , Kpk } = { j |k j =
1} to be the set of variables for which k j = 1 (the order of
variables is random). We also define a sequence of models,
γ (1), . . . , γ (pk) and neighbourhoods, N (1), . . . , N (pk) to
sample the final proposal γ ′. To introducemore flexibility,we
allow different weighting functions for each sub-proposal so
pk weighting functions g1, . . . , gpk are defined. Finally, let
e(1), . . . , e(p) be the basis vector of a p-dimensional Carte-
sian spacewhere e( j) j = 1 and e( j) j ′ = 0whenever j ′ = j .
We consider the neighbourhoods constructed according to
γ ( j) and e(Kr ) for r from 1 to pk . The first neighbourhood
is N (1) = N (γ, e(K1)) and propose a model γ (1) from

qPARNIθ,K1
(γ, γ (1)) ∝

⎧
⎪⎨

⎪⎩

g1

(
π(γ (1))pRN

ηopt
(e(K1)|γ (1))

π(γ )pRN
ηopt

(e(K1)|γ )

)

qTHINω,e(K1)
(γ, γ (1)), if γ (1) ∈ N (1)

0, otherwise
(27)

for some algorithmic parameters θ = (ηopt, ω) ∈ �
2p+1
ε .We

repeat this process to construct the second neighbourhood
N (2) = N (γ (1), e(K2)) and propose the model γ (2) from
N (2). In general, at time r , we defined N (r) = N (γ (r −
1), e(Kr )) and propose a model γ (r) from

qPARNIθ,Kr
(γ (r − 1), γ (r)) ∝

⎧
⎪⎨

⎪⎩

gr

(
π(γ (r))pRN

ηopt
(e(Kr )|γ (r))

π(γ (r−1))pRN
ηopt

(e(Kr )|γ (r−1))

)

qTHINω,e(Kr )
(γ (r − 1), γ (r)), if γ (r) ∈ N (r)

0, otherwise.
(28)

Each sub-proposal above only allows the value in position
Kr to change. Figure 1 provides a flowchart of the PARNI
schemewhich only involves enumerating atmost 2pk models
rather than 2pk models in theARNI proposal. The parameters
of the proposal are θ = (ηopt, ω).

To construct a π -reversible chain, the probability of the
reverse moves is required. These reverse moves use K ′ =
ρ(K ) as their auxiliary variables. The mapping ρ reverses
the order of elements in K so that the variable K ′ contains
the same elements in K but with reverse order. The typical
benefit is that it leads to identical intermediate models of
forward and reverse proposals and the posterior probabili-
ties of pk models are required instead of 2pk . Suppose that
γ ′(r) for r = 0, . . . , pk are consecutive intermediate models
used in the reverse move and N ′(r) for r = 0, . . . , pk are
the neighbourhoods used in the reverse move. These models
and neighbourhoods are identical to those ones used in the
proposal move but with opposite order, in particular γ ′(r) =
γ (pk − r) for r = 0, . . . , pk and N ′(r) = N (pk − r +1) for
r = 1, . . . , pk . The second benefit is that the design leads
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γ = γ(0)
γ(1)

γ(2)

· · ·

γ(pk − 1)

γ(pk) = γ′

N
(γ,

k)

N(1)

N(2)

N(pk − 1)

N(pk)

γ′(pk) = γ
γ′(pk − 1)

γ′(pk − 2)

· · ·

γ′(1)

γ′ = γ′(0)

N
(γ

′ , k)

N ′(pk)

N ′(pγ − 1)

N ′(2)

N ′(1)

Fig. 1 Flowcharts of the pointwise implementation of adaptive random
neighbourhood informed proposal in one iteration. Top panel: proposed
direction. Bottom panel: reversed direction. The black neighbourhoods
N (γ, k) and N (γ ′, k) are the original large neighbourhoods. The red
neighbourhoods N (r) and N ′(r) are subsequent small neighbourhoods
used for each intermediate proposals. The orange model γ is the current
state and the cerise model γ ′ is the final proposal. The blue models γ (r)
and γ ′(r) are intermediate models. The light blue arrows indicate the
position-wise proposals. (Color figure online)

to a simpler form of the Metropolis-Hastings probability of
acceptance. Let Z(r) be the normalising constant of the r -
th sub-proposal, qPARNIθ,Kr

(γ (r − 1), γ (r)), and Z ′( j) denote
the normalising constant of r -th sub-proposal in the reverse
move, qPARNI

θ,K ′
r

(γ ′(r−1), γ ′(r))with weighting functions g′
r .

We have that

Z(r) =
∑

γ ∗∈N (r)

gr

⎛

⎝
π(γ ∗)pRN

ηopt
(e(Kr )|γ ∗)

π(γ (r − 1))pRN
ηopt

(e(Kr )|γ ( j − 1))

⎞

⎠

qTHINω,e(Kr )
(γ ( j − 1), γ ∗)

Z ′(r) =
∑

γ ∗∈N ′(r)
g′
r

⎛

⎝
π(γ ∗)pRN

ηopt
(e(K ′

r )|γ ∗)

π(γ ′(r − 1))pRN
ηopt

(e(K ′
r )|γ ′( j − 1))

⎞

⎠

qTHINω,e(K ′
r )

(γ ′( j − 1), γ ∗).

(29)

We let qPARNIθ,k (γ ′, γ ) be the full proposal kernel that satisfies

qPARNIθ,k (γ, γ ′) =
pk∏

r=1

qPARNIθ,K j
(γ (r − 1), γ (r)) (30)

where γ (0) is current state γ and γ (pk) is the final proposal
γ ′. The Metropolis-Hastings acceptance probability of the
PARNI proposal is given as

αPARNI
θ,k (γ, γ ′) =

{

1,
π(γ ′)pRN

ηopt
(k|γ ′)qPARNIθ,k (γ ′, γ )

π(γ )pRN
ηopt

(k|γ )qPARNIθ,k (γ, γ ′)

}

.

(31)

In specifying these weighting functions gr for r =
1, . . . , pk , because each sub-proposal in the PARNI proposal
can be treated as addition/deletion move, it is feasible to
choose the thresholding function as LIT in Zhou et al. (2021)
for different moves. We consider the following thresholded
weighting function

gr (t) =
{
min{max{p−1, t}, p}, if γ (r)Kr = 0

min{max{p−1, t}, 1}, if γ (r)Kr = 1
(32)

for r = 1, . . . , pk . The weighting functions in the reverse
move are defined similarly. Alternatively, we can also use
a balancing function g in PARNI. The choice of balanc-
ing function mainly focuses on three particular candidates:
square root function gsq(t) = √

t , Hastings’ choice gH(t) =
min{1, t} and Barker’s choice gB = t/(1 + t). The compar-
isons of these balancing functions in Supplement B.1.3 of
Zanella (2020) illustrate two major findings. The Hastings’
and Barker’s choices only differ by at most a factor of 2 due
to their similar asymptotic behaviors. The square root func-
tion mixes the worst outside the burn-in phase. Therefore,
we consider the Hastings’ choice throughout (i.e.

gr (t) = min{1, t} (33)

for all r = 1, . . . , pk) in the rest of the paper. Similar results
are also expected for theBarker’s choice.Using the balancing
function would lead to a simpler form of the Metropolis-
Hastings acceptance probability and this is illustrated by the
following proposition:

Proposition 3 Suppose γ , γ ′ ∈ � are fixed. For any θ =
(η, ω) ∈ �

2p+1
ε and k such that γ ′ ∈ N (γ, k), if the weight-

ing function gr satisfies gr (t) = tgr (1/t) for all r , the
Metropolis-Hastings acceptance probability in (31) can be
written

αPARNI
θ,k (γ, γ ′) = min

{

1,
pk∏

r=1

Z(r)

Z ′(r)

}

(34)
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where Z(r), Z ′(r) for r = 1, · · · , pk are the normalising
constants given in (29).

The PARNI proposal which uses thresholding function is
referred to as PARNIT whereas one uses balancing function
is referred to as PARNIB.

4.2.2 Adaptation schemes for algorithmic parameters

The last building block to complete the PARNI sampler is the
adaptation mechanism of the tuning parameters. The pos-
terior inclusion probabilities π j are updated as in the ASI
scheme in (5). Themagnitudeof the proposal thinningparam-
eter ω is crucial in the mixing time and convergence rate of
chains. Therefore, we consider two adaptation schemes for
updating ω, the Robins-Monro adaptation scheme (RM) and
the Kiefer–Wolfowitz adaptation scheme (KW). For the rest
of section, we assume L multiple chains are used for the
PARNI sampler.

The Robbins-Monro adaptation scheme is widely used
in updating tuning parameters of adaptive MCMC rithms.
Andrieu and Thoms (2008) review several adaptive MCMC
algorithms using variants of the Robbins-Monro process.
Given a specified probability of acceptance τ , the Robbins-
Monro adaptation scheme automatically adjustsω according
to the comparison between the current probability of accep-
tance and τ . It is generally considered to be a robust adaption
scheme. Given the acceptance probability of the l-th chain
at the i-th iteration αl

i , the tuning parameter ω is updated
through the law

logitεω
(i+1) = logitεω

(i) + φi

L

L∑

l=1

(αl
i − τ). (35)

for φi = O(i−λ) for some constant 1/2 < λ < 1. The
theoretical optimal value of τ may not exist for every can-
didate proposal kernel and choice of posterior distribution.
We recommend using the diminishing sequence φi = i−0.7

and using a target acceptance rate of 0.65 based on a large
number of experiments that will be illustrated in Sect. 5.

Apart from the aboveRobbins-Monro scheme, theKiefer–
Wolfowitz scheme is another possible adaption in tuning ω

for the PARNI sampler. The Kiefer–Wolfowitz scheme is a
stochastic approximation algorithm and modification of the
Robbins-Monro scheme in which a finite difference approxi-
mation to the derivative is used. In this scheme the tuning
parameter is updated to target the optimiser of an objec-
tive function of interest. According to the work of Pasarica
and Gelman (2010), one can use the expected squared jump-
ing distance as the objective function because the expected
squared jumping distance is closely linked to the mixing
and convergence properties of aMarkov chain. The expected
squared jumping distance can be estimated by the average

squared jumping distance. An alternative objective function
would be the generalised speedmeasure introduced in Titsias
and Dellaportas (2019).

To estimate the finite difference approximation to the
derivative of the average squared jumping distance, we
exploit the multiple chain implementation of PARNI. The
multiple independent chains naturally provide independent
sampleswhich fits theKiefer–Wolfowitz approximation.Our
implementation of the Kiefer–Wolfowitz adaption scheme
proceeds as follows.We first evenly divide L multiple chains
into two equally sized batches, L+ and L−. Let ci be a
diminishing sequence, new proposals are generated using
ω+ = ω(i) + ci for chains in L+ and ω− = ω(i) − ci for
chains in L−. The average squared jumping distances for
these batches (i.e. ASJD+,(i) and ASJD−,(i)) are estimated
using the new proposals and their corresponding probabili-
ties of acceptance. The tuning parameter ω is then updated
according to the rule

logitεω
(i+1) = logitεω

(i) + ai

(
ASJD+,(i) − ASJD−,(i)

2ci

)

.

(36)

We suggest using ai = i−1 and ci = i−0.5 in the Kiefer–
Wolfowitz scheme. Further details of the Kiefer–Wolfowitz
adaption scheme are given in A.1 of the supplementary
material and a feasibility analysis of the Kiefer–Wolfowitz
adaption scheme is carried out in C.2 of the supplementary
material.

Remark 7 Blum (1954) show the Kiefer–Wolfowitz scheme
converges if the diminishing sequences ai and ci satisfy∑∞

i=0 a
2
i c

−2
i = ∞. According to Remark 6, the sequences

ai and ci should have diminishing rate between −0.5 and
−1. Therefore, the only possible pair would be ai = i−1 and
ci = i−0.5.

Remark 8 Alternative to adapting the thinning parameter ω

through the above adaptive schemes, one can set ω to a fixed
value of 1/2 for simplicity and the base kernelqTHIN becomes
uniformly distributed. Note that fixing ω at 1/2 does not
necessarily lead to optimal mixing for the PARNI scheme.

Pseudocode of the PARNI samplers are given in Algo-
rithm 3. The corresponding transition kernel is referred to as
pPARNI(∗)−•
θ for ∗ = T or B and • = RM or KW. In the next

section we show that the PARNI sampler is π -ergodic and
satisfy a strong law of large numbers.

4.2.3 Ergodicity and strong law of large numbers

The multiple chain acceleration can be thought of the reali-
sation of L runs on a product space �⊗L with joint variable
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If ∗ is T, then use a thresholding function as in (32); else if ∗ is B,
then use a balancing function as in (33);
for i = 1 to i = N do

If • is KW, then divide L-chains into L+ and L− and compute ω+
and ω−;

for l = 1 to l = L do
Sample k ∼ pRN

η(i) (·|γ l,(i)) as in (15);

Set γ (0) = γ (i), pk = ∑p
j=1 k j , K = { j |k j = 1};

for r = 1 to r = pk do
Sample γ (r) ∼ qPARNI

θ(i),K j
(γ (r − 1), ·) as in (28);

Calculate Z(r) and Z ′(pk − r + 1) as in (29);
end for
Set γ ′ = γ (pk) Sample U ∼ U (0, 1);
If U < αPARNI

θ(i),k
(γ (i), γ ′) as in (31), then γ (i+1) = γ ′, else

γ (i+1) = γ (i);
Update π̂

(i+1)
j as in (5), set π̃ (i+1)

j = π0 + (1− 2π0)π̂
(i+1)
j for

j = 1, . . . , p;
end for
Update A(i+1)

j = min
{
1, π̃ (i+1)

j /(1 − π̃
(i+1)
j )

}
;

Update D(i+1)
j = min

{
1, (1 − π̃

(i+1)
j )/π̃

(i+1)
j

}
;

If • is RM, then update ω(i+1) as in (35);
else if • is KW, then update ω(i+1) as in (36);

Set η(i+1) = (A(i+1), D(i+1)) and θ(i+1) = (η(i+1), ω(i+1))

end for

Algorithm 3: Pointwise Adaptive Random Neighbourhood
Sampler with Informed proposal (PARNI(∗)-•)

γ ⊗L = (γ 1, . . . , γ L) ∈ �⊗L . Without loss of generality,
suppose further that L ≥ 1 for the Robbins-Monro adapta-
tion scheme and L ≥ 2 for the Kiefer–Wolfowitz adaptation
scheme. We consider a posterior distribution π on the space
� which is of the form

π(γ ) ∝ p(y|γ )p(γ ) (37)

where both p(y|γ ) and p(γ ) are analytically available. In
addition, the joint posterior distribution π⊗L on the product
set �⊗L is given as

π⊗L(γ ⊗L) =
L∏

l=1

π(γ l). (38)

In this section, the symbol ∗ denotes either T or B and the
symbol • represents either KW or RM. The sub-proposal
mass function of the PARNI(∗)−• sampler given neighbour-
hood indicator variable k and tuning parameter θ = (η, ω)

is defined by

ψ
PARNI(∗)−•
θ,k (γ, γ ′) = pRNη (k|γ )qPARNI(∗)−•

θ,k (γ, γ ′). (39)

The full transition kernel of the PARNI sampler is
marginalised over all possible k

PPARNI(∗)−•
θ (γ, S) =

∑

k∈K
PPARNI(∗)−•

θ,k (γ, S) (40)

where the sub-transition kernels given k are

PPARNI(∗)−•
(θ,k) (γ, S) =

∑

γ ′∈S
pPARNI(∗)−•
θ,k (γ, γ ′)

=
∑

γ ′∈S
ψ
PARNI(∗)−•
θ,k (γ, γ ′)αPARNIθ,k (γ, γ ′)

+ I{γ ∈ S}
∑

γ ′∈�

ψ
PARNI(∗)−•
θ,k (γ, γ ′)(1 − αPARNIθ,k (γ, γ ′))

(41)

andαPARNI
θ,k areMetropolis-Hastings acceptance rates in (31).

TheMarkov chain transition kernel that works on the product
space �⊗L is given as

PPARNI(∗)−•
(θ,k⊗L )

(γ ⊗L , S⊗L) =
L∏

l=1

PPARNI(∗)−•
(θ,kl )

(γ l , Sl). (42)

To establish the ergodicity and a SLLN of the PARNI
sampler and its multiple chain acceleration, we require the
following assumptions:

(A.1) The weighting function g : R
+ → R

+ is Cg-
Lipschitz. That is to say for any t2 > t1 > 0, there
exists a constantCg such that the weighting function
g satisfies

|g(t2) − g(t1)| ≤ Cg|t2 − t1|. (43)

The thresholded function of LIT clearly satisfies this
assumption. This is also a common condition for the
proper choice of balancing functions. For example,
Hastings’ choice gH(t) = min{1, t} follows (45)
immediately for Cg = 1 and Barker’s choice gB =
t/(1 + t) also follows (45) when Cg = 1 (i.e. the
maximum derivative).

(A.1.a) Given a small positive real number c that is the uni-
versal minimum value of the ratio below

π(γ ′)pRNη (k|γ ′)
π(γ )pRNη (k|γ )

(44)

for all γ , γ ′ ∈ � and k ∈ K and η ∈ �
p
ε = (ε, 1 −

ε)p, the weighting function g : (c,∞) → (c,∞) is
Cg-Lipschitz. That is to say for any t2 > t1 > c > 0,
there exists a constant Cg such that the weighting
function g satisfies

|g(t2) − g(t1)| ≤ Cg|t2 − t1|. (45)

The square root function gsq(t) = √
t satisfy this

condition by setting Cg to be c−1/2/2.
(A.2) The posterior distribution π is everywhere positive

and bounded, that is, there exists a positive � ∈
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(1,∞) such that

1

�
≤ π(γ ′)

π(γ )
≤ �

for all γ , γ ′ ∈ �.
(A.3) Recall the interval �

2p+1
ε = (ε, 1 − ε)2p+1, the

tuning parameters θ(i) = (η(i), ω(i)) are bounded
away from 0 and 1, and lie in this interval

θ(i) ∈ �2p+1
ε (46)

for some small ε ∈ (0, 1/2).

The analysis of convergence and ergodicity often relies
on the distribution of the Markov chain at time i along with
its associated total variation distance ‖ · ‖T V at an arbitrary
starting point. Given {γ l,(i)}∞i=0 these are defined as

Ll,(i)[(γ l , θ), S] := Pr
[
γ l,(i) ∈ S|γ l,(0) = γ l , θ0 = θ

]
,

(47)

lim
i→∞ T l(γ l , θ, i) := ‖Ll,(i)[(γ l , θ), ·] − π(·)‖T V . (48)

We show here that the PARNI sampler is ergodic and satisfies
a strong lawof large numbers (SLLN). Inmathematical terms
for any starting point γ ⊗L ∈ �⊗L and θ ∈ �

2p+1
ε ergodicity

means that

lim
i→∞ T l(γ l , θ, i) → 0, (49)

for any l = 1, . . . , L , while a strong law of large numbers
(SLLN) implies that

1

NL

N−1∑

i=0

L∑

l=1

f (γ l,(i)) → π( f ) (50)

almost surely, for any f : � → R. We first establish two
technical results before presenting the main theorem of this
section.

Lemma 1 (Simultaneous Uniform Ergodicity) The MCMC
transition kernel PPARNI(∗)−•

θ in (40) with target distribution
π in (37) is simultaneously uniformly ergodic for any choice
of ε ∈ (0, 1/2) in (46). i.e. for any δ > 0, there exists N =
N (δ, ε) such that

∥
∥
∥
∥

(
PPARNI(∗)−•

θ (γ ⊗L , ·)
)N − π⊗L(·)

∥
∥
∥
∥
T V

≤ δ

holds for any any starting point γ ⊗L ∈ �⊗L and any value
θ ∈ �

2p+1
ε .

Lemma 2 (Diminishing adaptation) Let the constant of
adaptation rate λ be in (1/2, 1) for • = RM and be 1/2
for • = KW, for any ε ∈ (0, 1/2) and π0 ∈ (0, 1), the
PARNI sampler satisfies diminishing adaptation, that is, its
transition kernel satisfies

sup
γ∈�

∥
∥
∥P

PARNI(∗)−•
θ(i+1) (γ, ·) − PPARNI(∗)−•

θ(i) (γ, ·)
∥
∥
∥
T V

≤ Ci−λ

(51)

for some constant C < ∞.

Theorem 2 (Ergodicity and SLLN) Consider a target distri-
bution π(γ ) in (37), constant of adaptation rate λ ∈ (1/2, 1)
for • = RM and λ = 1/2 for • = KW and ε ∈ (0, 1/2) that
lead to a adaptation rateO(i−λ), and the parameter π0 > 0
in Algorithm 3. Then ergodicity (49) and a strong law of large
numbers (50) hold for all the PARNI(T)-KW, PARNI(T)-RM,
PARNI(B)-KW and PARNI(B)-RM samplers as described in
Algorithm 3 and its corresponding multiple chain accelera-
tion versions.

5 Numerical studies

5.1 Simulated data

We consider the data generation model introduced by Yang
et al. (2016), and replicated in simulation studies conducted
by Griffin et al. (2021) and Zanella and Roberts (2019). Sup-
pose a linear model with n observations and p covariates is
needed, data are generated from the model specification

y = X∗β∗ + ε

where ε ∼ Nn(0, σ 2 In) for pre-specified residual variance
σ 2 and β∗ = SNR × β̃

√
(σ 2 log p)/n in which SNR repre-

sents the signal-to-noise ratios. Let β̃ = (2,−3, 2, 2,−3, 3,
−2, 3,−2, 3, 0, · · · , 0) and each row of the design matrix
X∗
i follow a multivariate normal distribution with mean

zero and covariance � with entries � j j = 1 for all j and
�i j = 0.6|i− j | for i = j . We consider four choices of SNR,
namely 0.5, 1, 2 and 3, two choices of n, namely 500 and
1,000 and three choices of p, namely 500, 5000 and 50,000.

We use the same prior parameter values Vγ = Ipγ , g = 9
and h = 10/p as specified in Griffin et al. (2021). In the
same work, a detailed description of the resulting poste-
rior distributions is given. In the presence of a low SNR
(SNR = 0.5), there is too much noise to detect the true non-
zero variables and the resulting posterior is rather flat, with
no variables having posterior inclusion probabilities larger
than 0.1. The posterior distributions are completely differ-
ent when the SNR is large (SNR = 2 and SNR = 3). In
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Fig. 2 Simulated data: trace plots of log posterior model probability
from the Add-Delete-Swap (ADS), Adaptively Scaled Individual (ASI)
adaptation, Pointwise implementation of Adaptive Random Neigh-
bourhood Informed and Thresholded proposal with Kiefer–Wolfowitz
update (PARNIT-KW), Pointwise implementation of Adaptive Random
Neighbourhood Informed and Thresholded proposal with Robbins-

Monro update (PARNIT-RM), Pointwise implementation of Adaptive
Random Neighbourhood Informed and balanced proposal with Kiefer–
Wolfowitz update (PARNIB-KW) and Pointwise implementation of
Adaptive Random Neighbourhood Informed and balanced proposal
with Robbins-Monro update (PARNIB-RM) samplers for the first 1500
iterations on simulated datasets with signal-to-noise ratio of 2

these cases all of the true non-zero variables have inclusion
probabilities close to 1 as the posterior distributions are more
concentrated. In the intermediate case SNR = 1 slightly less
than half of the true non-zero variables have inclusion prob-
abilities above 0.8. In general the problem of finding the true
non-zero variables becomes more difficult in the cases with
lower SNR, smaller n and larger p.

We are interested in comparing the performance of the
ASI and PARNI schemes relative to anADS sampler because
the ASI scheme has been compared with several other state-
of-the-art MCMC algorithms in Griffin et al. (2021). The
adaptive algorithms are run with 25 multiple chains. The
first third of the chain are identified as the period of burn-
in. In addition, to reduce the computational budget, all the
adaptations terminate after the period of burn-in.

Trace plots of chains are a straightforwardway to visualise
convergence. Figure 2 are the trace plots of posterior model

probabilities from the ADS, ASI, PARNIT-KW, PARNIT-
RM, PARNIB-KW and PARNIB-RM algorithms for the first
1500 iterations when the SNR = 2. The ADS scheme fails to
converge for all choices of n and p and in particular becomes
trapped at areas around the null model (i.e. the empty model)
for a long period of timewhen p = 50, 000. TheASI scheme
converges reasonably quickly when p is 500 or 5000, but
takes longer to reach high probability regions when p =
50, 000. This suggests that ASI mixes worse and converges
slower in high-dimensional data-sets. On the other hand, all
the PARNI samplers mix rapidly in this setting for which
they only take several moves to converge properly.

The trace plots are not truly a fair comparison as they do
not take into account running time. To better address the issue
of computational efficiency we ran all of the algorithms for 3
repetitions. Each individual chain was run for 15 min and we
stored the estimates of posterior inclusion probabilities. We

123



   84 Page 16 of 52 Statistics and Computing            (2022) 32:84 

Table 1 Simulated data: relative average mean squared errors for the
Adaptively scaled individual (ASI), Pointwise implementation ofAdap-
tive Random Neighbourhood Informed and Thresholded proposal with
Kiefer–Wolfowitz update (PARNIT-KW), Pointwise implementation of
Adaptive RandomNeighbourhood Informed and Thresholded proposal
with Robbins-Monro update (PARNIT-RM), Pointwise implementation

of Adaptive Random Neighbourhood Informed and balanced proposal
with Kiefer–Wolfowitz update (PARNIB-KW) and Pointwise imple-
mentation of Adaptive RandomNeighbourhood Informed and balanced
proposal with Robbins-Monro update (PARNIB-RM) schemes on esti-
mating posterior inclusion probabilities over important and unimportant
variables respectively against a standard Add-Delete-Swap algorithm

(n, p) Samplers SNR
0.5 1 2 3

(500, 500) ASI −4.67(−3.49) −1.61(0.42) −1.53(−0.79) −1.25(−1.01)

PARNIT-KW −4.48 (−3.34) −1.57 (−0.69) −1.49 (−0.71) −0.86(−1.04)

PARNIT-RM −4.58 (−3.33) −1.55 (−0.70) −1.77 (−0.67) −1.28 (−0.97)

PARNIB-KW −4.71(−3.35) −1.69(−0.69) −1.73(−0.67) −0.97(−1.02)

PARNIB-RM −4.49(−3.40) −1.58(−0.70) −1.54(−0.61) −0.74(−0.94)

(1000, 500) ASI −4.36(−3.93) −0.39(−0.15) −1.45(−1.00) −0.75(−1.07)

PARNIT-KW −3.77 (−3.96) −1.20 (−1.86) −1.24 (−0.95) −0.89 (−1.02)

PARNIT-RM −3.67 (−3.88) −1.88 (−1.83) −1.23 (−0.93) −0.89 (−0.95)

PARNIB-KW −4.33(−3.99) −2.06(−1.80) −1.19(−0.96) −0.87(−0.97)

PARNIB-RM −4.45(−3.93) −1.92(−1.48) −1.45(−0.94) −0.72(−0.91)

(500, 5000) ASI −1.97(−0.12) −1.32(−0.04) −1.20(0.11) −1.90(0.13)

PARNIT-KW −2.29 (−0.62) −1.68 (−0.12) −1.71 (−0.28) −1.93 (−0.20)

PARNIT-RM −2.52 (−0.59) −1.73 (−0.53) −1.61 (−0.29) −2.07 (−0.23)

PARNIB-KW −2.27(−0.60) −1.98(−0.10) −1.77(−0.28) −1.86(−0.15)

PARNIB-RM −2.66(−0.58) −1.97(−0.18) −1.66(−0.33) −1.78(−0.19)

(1000, 5000) ASI −3.76(−2.05) −0.86(−0.02) −0.66(−0.01) −1.28(−0.06)

PARNIT-KW −4.01 (−2.65) −0.98 (−0.45) −0.05 (−0.29) −1.79 (−0.34)

PARNIT-RM −4.05 (−2.86) −1.05 (−0.54) −0.72 (−0.45) −2.37 (−0.25)

PARNIB-KW −4.09(−2.67) −1.18(−0.44) −1.76(−0.38) −2.42(−0.29)

PARNIB-RM −4.76(−2.69) −1.14(−0.52) −0.33(−0.39) −1.80(−0.35)

(500, 50, 000) ASI −1.37(0.42) −2.55(1.19) −3.95(−0.54) −3.35(−0.52)

PARNIT-KW −2.78 (−0.90) −4.25 (−2.42) −5.15 (−1.94) −5.13 (−2.06)

PARNIT-RM −2.51 (−0.91) −4.48 (−2.44) −4.96 (−1.95) −4.90 (−2.14)

PARNIB-KW −2.32(−0.88) −4.57(−2.41) −5.33(−1.97) −4.91(−2.10)

PARNIB-RM −2.77(−0.89) −4.51(−2.42) −5.19(−1.93) −5.02(−2.16)

(1000, 50, 000) ASI −1.60(−0.42) −2.65(0.50) −3.94(−0.87) −2.40(1.80)

PARNIT-KW −3.31 (−1.57) −4.13 (−0.54) −4.40 (−1.38) −4.88 (−0.77)

PARNIT-RM −2.42 (−1.60) −3.24 (−0.34) −4.83 (−1.45) −4.03 (−0.78)

PARNIB-KW −2.17(−1.63) −3.72(−0.61) −4.77(−1.41) −4.35(−0.76)

PARNIB-RM −2.68(−1.62) −3.83(−0.58) −4.60(−1.52) −4.57(−0.80)

The quantities outside the brackets are for important variables which have posterior inclusion probabilities greater than 0.01 whereas the quantities
inside the brackets are for unimportant variables which have posterior inclusion probabilities less than 0.01. Values are presented in logarithm to
base 10. Smaller values always indicate better estimates. Values in bold are those methods which have the best performance for each simulated
dataset

calculated mean squared errors of these estimates compared
to “gold standard” estimates taken from aweighted tempered
Gibbs sampler that was run for roughly 12 h.We show results
in the form of performance relative to the ADS scheme in
Table 1. Smaller values always indicate better performance
of the scheme. The value of −1 indicates the scheme yields
10 times smallermean squared errors compared to those from
theADS scheme in this specific data-set. Generally speaking,
the mean squared errors for important variables are greater

than those for important variables for almost every data-set
and scheme. The choice of n does not significantly affect the
performance of the samplers. Concentrating on the results
for important variables, the ASI scheme leads to an order
of magnitude improvement in efficiency over the ADS sam-
pler, which match the results in Griffin et al. (2021). The
four PARNI algorithms with different weighting functions
and adaptations lead to similar levels of accuracy and dom-
inate both the ASI and ADS schemes in every case except
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p = 500. In particular, the PARNI schemes result in roughly
105 times improvements over ADS and more than 10 times
improvements over ASI when p = 50, 000 and SNR= 2. On
the other hand, theADSscheme is quite adept at removing the
unimportant variables when the truemodel size is small com-
pared to the number of covariates. When p = 50, 000 and
SNR> 1 the ASI scheme struggles with unimportant vari-
ables and leads to worse estimates than ADS, but the PARNI
algorithms produce better estimates even for these unimpor-
tant variables. Overall, the results suggest PARNI samplers
are more computationally efficient than alternatives when p
is large. More results from simulated data are provided in
Section C.3 of the supplementary material.

5.2 Real data

We consider eight real data-sets implemented in Griffin et al.
(2021), four of them with moderate p and four with larger p.

The first data-set is the Tecator data-set, which is pre-
viously analysed by Brown and Griffin (2010) in Bayesian
linear regression and implemented by Lamnisos et al. (2013)
and Griffin et al. (2021) in the context of Bayesian variable
selection. It contains 172 observations and 100 explana-
tory variables. We also consider three small p data sets
constructed by Schäfer and Chopin (2013) to illustrate
the performance of sequential Monte Carlo algorithms on
Bayesian variable selection problems, the Boston Housing
data (n = 506, p = 104), the Concrete data (n = 1030, p =
79) and the Protein data (n = 96, p = 88). These data sets
are extended by squared and interaction terms which lead to
high dependencies and multicollinearity.

The last four data sets are high-dimensional problemswith
very large p. Three of them come from an experiment con-
ducted by Lan et al. (2006) to examine the genetics of two
inbred mouse populations. The experiment resulted in a set
of data with 60 observations in total that were used to mon-
itor the expression levels of 22, 575 genes of 31 female and
29 male mice. Bondell and Reich (2012) first considered this
data-set in the context of variable selection. Three physiolog-
ical phenotypes are also measured by quantitative real-time
polymerase chain reaction (PCR), they are used as possible
responses and are named PCRi for i = 1, 2, 3 respectively.
For more details, see Lan et al. (2006); Bondell and Reich
(2012). The last data-set concerns genome-wide mapping
of a complex trait. The data are illustrated in Carbonetto
et al. (2017). They are body and testis weight measurements
recorded for 993 outbred mice, and genotypes at 79,748 sin-
gle nucleotide polymorphisms (SNPs) for the same mice.
The main purpose of the study is to identify genetic variants
contributing to variation in testis weight. Thus, we consider
the testis weight as response, the body weight as a regressor
that is always included in the model and variable selection is
performed on the 79,748 SNPs.

Before analysing the performance of MCMC algorithms
on the above data-sets, it is worth discussing the selection
of an optimal acceptance rate for the PARNI-RM sampler.
The optimal scaling property of a Gaussian random walk
proposal on some specific forms of target distribution is
a well-studied problem. The most commonly used guide-
line is to seek an average acceptance rate of 0.234 (Gelman
et al. 1997). The optimal acceptance rates for sophisticated
informed proposals involving gradient information are typi-
cally larger, e.g. 0.57 for the Metropolis-adjusted Langevin
algorithm (Grenander and Miller 1994; Roberts and Rosen-
thal 1998) and 0.65 for Hamiltonian Monte Carlo (Duane
et al. 1987; Beskos et al. 2013). As our balanced random
neighbourhood proposals can be viewed as a discrete analog
to these gradient-based algorithms, it is natural to think that
the PARNI samplers will have a larger optimal acceptance
rate than a random walk Metropolis. To test this, we ran the
PARNIT-RM and PARNIB-RM schemes targeting different
rates of acceptance on the above data-sets. Figures 3 and 4
show the effect of the average acceptance rate on the expected
squared jumping distance and average mean squared errors
of these two schemes respectively. Both of the figures imply
the same conclusions. Parts (a) and (b) of the figure illus-
trate the relation between the thinning parameter ω and the
average acceptance rate. Bigger values of ω are synonymous
with larger jumps and therefore can lead to a smaller aver-
age acceptance rate. Parts (c) and (d) of the figure suggest
that the maximum average squared jumping distance occurs
when the acceptance rate is around 0.65 for all data-sets.
Parts (e) and (f) show that the average mean squared error
is minimised when the average acceptance rate is around a
similar region. Therefore, for problems we have looked at,
targeting an average acceptance rate of 0.65 does not perform
badly. Similar results for the simulated data-sets of 5.1 are
presented in C.1 of the supplementary material. We stress
that the PARNIT-KW and PARNIB-KW schemes does not
require a target acceptance rate to be chosen, so users who
are uncomfortable with having to choose this quantity for a
particular data-set are recommended to use this version of
the sampler.

We consider a total of ten different MCMC schemes for
these sets of data. In addition to the six schemes used in the
simulation study (ADS, ASI, PARNIT-KW, PARNIT-RM,
PARNIB-KW and PARNIB-RM), we also implement four
state-of-the-art algorithms, theHamming ball sampler (HBS)
with radius of 1 of Titsias and Yau (2017), both the tempered
Gibbs sampler (TGS) and weighted tempered Gibbs sam-
pler (WTGS) of Zanella and Roberts (2019), and also the
Locally Informed and Thresholded (LIT) scheme by Zhou
et al. (2021) (which uses same weighting function as the
LIT-MH-1 scheme in their paper). All algorithms are run
for the same amount of time and compared using average
mean squared errors. Only the adaptive schemes are run with
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Table 2 Table of prior specifications of 8 real dataset

Dataset Prior on βγ Prior on γ

Tecator, Concrete, Boston Housing, Protein βγ ∼ Npγ (0, 100Ipγ ) p(γ ) = h pγ (1 − h)p−pγ , h = 5/100

PCR1, PCR2, PCR3 βγ ∼ Npγ (0, 1/2 × Ipγ ) p(γ ) = h pγ (1 − h)p−pγ , h ∼ Be(1, (p − 5)/5)

SNP βγ ∼ Npγ (0, 1/4 × Ipγ ) p(γ ) = h pγ (1 − h)p−pγ , h = 5/p
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Fig. 3 Real data: plots of expected squared jumping distance and
average mean square error again average acceptance rate and ω

for the Pointwise implementation of Adaptive Random Neighbour-
hood Informed and Thresholded proposal with Robbins-Monro update
(PARNIT-RM). a average acceptance rate against ω for 4 small-p real
datasets; b average acceptance rate againstω for 4 large-p real datasets;

c expected squared jumping distance against average acceptance rate for
4 small-p real datasets; d expected squared jumping distance against
average acceptance rate for 4 large-p real datasets; e average mean
squared error against average acceptance rate for 4 small-p real datasets;
f averagemean squared error against average acceptance rate for 4 large-
p real datasets

25 multiple shorter chains while other schemes use a single
longer chain. The prior specification for each data-set is given
in Table 2 (Table table:realspsmse).

Figures 5 and 6 show trace plots of posterior model prob-
abilities from the ADS, ASI, PARNIT-KW, PARNIT-RM,
PARNIB-KWand PARNIB-RMalgorithms for the first 1500
iterations in all eight real data-sets. Overall, the PARNI
algorithms perform better than the ADS and ASI schemes
in both convergence and mixing. It is clear that the ADS
scheme does not mix well since it struggles to explore model

space. All algorithms do reach high-probability regions for
data-sets with moderate p in roughly the same number of
iterations, however the PARNI schemes can reach these high-
probability regions faster and accept more jumps inside the
model space. In the large p data-sets, these algorithms lead
to different behaviour. The ADS scheme gets trapped in the
null model and only proposes models around it and the ASI
algorithm does not converge properly for the first 1500 itera-
tions either. The PARNI schemes, by contrast, accept almost
every proposed states and mix very quickly. They are able
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Dataset
Tecator Concrete Boston Housing Protein

PCR1 PCR2 PCR3 SNP

Fig. 4 Real data: plots of expected squared jumping distance and
average mean square error again average acceptance rate and ω

for the Pointwise implementation of Adaptive Random Neighbour-
hood Informed and Balanced proposal with Robbins-Monro update
(PARNIB-RM). a average acceptance rate against ω for 4 small-p real
datasets; b average acceptance rate againstω for 4 large-p real datasets;

c expected squared jumping distance against average acceptance rate for
4 small-p real datasets; d expected squared jumping distance against
average acceptance rate for 4 large-p real datasets; e average mean
squared error against average acceptance rate for 4 small-p real datasets;
f averagemean squared error against average acceptance rate for 4 large-
p real datasets

to propose and accept models with relatively low posterior
probabilities and explore the sample space efficiently.

We next turn attention to the average mean squared errors
on these eight real data-sets. These results are shown in
Table 3. In moderate p data-sets, the PARNI samplers do not
dominate other schemes, but they still lead to good results.
However, PARNI performsworst for theBostonHousing and
Concrete data-sets, which are multi-modal and contain intri-
cately correlated covariates. This implies that the point-wise
sub-proposals of PARNI can become trapped at isolated local
modes. The ADS scheme performs well in terms of com-
putational efficiency for the Tecator and Concrete data-sets
due to a convenient computational implementationwhich has
the cheapest computational costs among competing schemes.
Due to the dimension-free mixing property, the LIT scheme
outperforms ADS except on the Tecator data-set where all
covariates carry non-negligible weights and all covariates
are therefore in the potentially influential subset S of � (see

Sect. 2.3 of Zhou et al. (2021) for more detail). For large
p problems all the PARNI schemes significantly outperform
other samplers. Surprisingly, theHBS and TGS schemes lead
to worse estimates than ADS. This can be explained by the
computational cost per iteration of theHBS, TGS andWTGS
algorithms, which is linear in p. The combination of these
large computational costs and the issue of rarely exploring
important variables lead to lowefficiencies forHBSandTGS.
The WTGS algorithm still outperforms TGS, which coin-
cides with the conclusions gathered in Zanella and Roberts
(2019) where the WTGS algorithm is shown to have smaller
relaxation time than TGS. The ASI algorithm gives compet-
itive estimates to WTGS in high-dimension but is eventually
dominated by the PARNI schemes. The LIT scheme leads
to better results in the SNP data-set (n = 993) but not in
PCR data-sets (n = 60) since the dimension-free mixing of
LIT only holds when n is comparatively large. And it yields
larger average mean squared errors than the PARNI samplers
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Fig. 5 Real data: trace plots of log posterior model probability from
the Add-Delete-Swap (ADS), Adaptively Scaled Individual (ASI)
adaptation, Pointwise implementation of Adaptive Random Neigh-
bourhood Informed and Thresholded proposal with Kiefer–Wolfowitz
update (PARNIT-KW), Pointwise implementation of Adaptive Random
Neighbourhood Informed and Thresholded proposal with Robbins-

Monro update (PARNIT-RM), Pointwise implementation of Adaptive
Random Neighbourhood Informed and balanced proposal with Kiefer–
Wolfowitz update (PARNIB-KW) and Pointwise implementation of
Adaptive Random Neighbourhood Informed and balanced proposal
with Robbins-Monro update (PARNIB-RM) samplers for the first 1500
iterations on 4 moderate-p datasets

in all large p data-sets because the ADS type neighbour-
hoods of the LIT scheme only contains models with at most
2 changes in Hamming distance and the jumping distance of
LIT therefore is bounded by 2 whereas PARNI can poten-
tially propose larger jumps. Among the PARNI schemes, the
two weighting schemes (thresholding and balancing func-

tion) have a similar level of efficiency. Specifically, using the
thresholding function estimates the posterior inclusion prob-
abilities with lower relative average mean square errors than
the balancing function in all four moderate p data-sets and
the PCR1 data-set. The performance of all PARNI schemes is
similar for the SNP data-set and outperforms that of competi-
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Fig. 6 Real data: trace plots of log posterior model probability from
the Add-Delete-Swap (ADS), Adaptively Scaled Individual (ASI)
adaptation, Pointwise implementation of Adaptive Random Neigh-
bourhood Informed and Thresholded proposal with Kiefer–Wolfowitz
update (PARNIT-KW), Pointwise implementation of Adaptive Random
Neighbourhood Informed and Thresholded proposal with Robbins-

Monro update (PARNIT-RM), Pointwise implementation of Adaptive
Random Neighbourhood Informed and balanced proposal with Kiefer–
Wolfowitz update (PARNIB-KW) and Pointwise implementation of
Adaptive Random Neighbourhood Informed and balanced proposal
with Robbins-Monro update (PARNIB-RM) samplers for the first 1500
iterations on 4 large-p real datasets

tors. In terms of the adaptation schemes, the PARNI sampler
with Kiefer–Wolfowitz adaption generally performs better
than the Robbins-Monro version, but only by a small mar-
gin. This is due to the fact that the optimal acceptance rates
are problem-specific and not exactly 0.65 for every data-set.

6 Discussion and future work

In this paper we present a framework for neighbourhood
based MCMC algorithms, and propose a new scheme as an
informed counterpart to the ASI algorithm in Griffin et al.
(2021), using elements from locally informed Metropolis-
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Hastings introduced in Zanella (2020) and Zhou et al. (2021).
To address the expensive computational costs introduced by
the informed proposal, we introduce two less computation-
ally costly algorithms, the PARNI schemes, which can lead
to a dramatic improvement in computational efficiency. In
addition, we offer two options of informed weighting func-
tions, the thresholding function and balancing function. The
PARNI schemes also allow twodifferent adaptation schemes,
the Kiefer–Wolfowitz and Robbins-Monro schemes. The
numerical results from Sect. 5 support the power of the
algorithmic structure of PARNI. The success of these new
schemes is attributed to two aspects. Firstly the adaptation
helps to explore the areas of interest (mainly with high
posterior probabilities), and secondly the locally informed
proposals are able to stabilise random walk behaviour in
high-dimensions and lead to rapidlymixing samplers in prac-
tice. From the numerical studies on both simulated and real
data-sets, we recommend using a PARNI sampler with the
Kiefer–Wolfowitz scheme for tackling high-dimensional (or
large p) Bayesian variable selection problems. We note that
it can still be challenging for the PARNI samplers to move
across low probabilistic regions, which could affect perfor-
mance when the posterior has very isolated modes. This
phenomenon is due to the fact that the PARNI samplers pro-
pose models sequentially where each sub-proposal can alter
only 1 position at most. On the other hand, the original ARNI
scheme can take larger jumps and is more able to explore
well-separated modes, albeit with a substantial increase in
computational costs. In summary, new schemes like PARNI
show the potential of combining adaptive, random neigh-
bourhood and informedproposals.We look forward to adding
more theoretical support to the numerical evidence shown
here in future work. In addition, the code to run the PARNI
samplers and aforementionednumerical studies canbedown-
loaded from https://github.com/XitongLiang/The-PARNI-
scheme.git.

There are many directions for extensions and future work.
Some recentwork has shed light on the issues of extra compu-
tational costs that come with informed proposals. Grathwohl
et al. (2021) develop an accelerated locally informedproposal
that uses derivatives with respect to the log mass functions.
It is possible to derive the gradient of the posterior mass
function with respect to γ with minor modifications to rep-
resentations of the posterior distribution π(γ ). To address
the lack of mode jumping in the PARNI schemes, we can
first try to construct larger blocks intelligently so that sepa-
rated models are covered in one single block. This solution
can be achieved by introducing basis vectors beyond the
Cartesian case in the block construction. One can also use
the sequential Monte Carlo methods of Schäfer and Chopin
(2013) and Ma (2015), which are more able to handle multi-
modality. Combining them with PARNI yields the chance of
producing efficient methods on highly multimodal posterior
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distributions with well-separated modes. Another option in
this direction is the JAMS algorithm of Pompe et al. (2020)
that first locates each individual mode and then produces a
mixture proposal that involves jumps within and between
modes.

We also intend to study the performance of the PARNI
schemes in generalised linear models as in Wan and Griffin
(2021) or a more flexible Bayesian variable selection model
such as that suggested by Rossell and Rubio (2018). In these
cases, regression coefficients and residual variance are no
longer integrated out analytically and the likelihood of γ is
not available in closed form. Informed proposals for such
models are computationally challenging because the propos-
als involve the evaluations of these likelihood but the required
approximations and estimates of the marginal likelihood are
computationally intensive.One possible approach is the data-
augmentation method using the Pólya-gamma distribution as
described in Polson et al. (2013). The design does however
require some care to avoid inefficiency causing by introduc-
ing a large number of auxiliary variables in large n problems.
We also believe that random neighbourhood samplers can be
used beyond variable selection, and aim to consider appli-
cations to other discrete-valued sampling problems in future
work.
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A Additional materials

A.1 The Kiefer–Wolfowitz adaption scheme

The optimal scaling property of a Gaussian random walk
proposal on some specific forms of target distribution is well-
studied. The most commonly used way to achieve optimal
mixing time is to tune scaling parameters, which leads to an
average acceptance rate of 0.234. In practice, even in those
cases where the posterior distribution does not strictly obey
the assumptions, the average acceptance rate of 0.234 is often
a suitable guide and results in good practical performance.
For those proposals beyond random walks, the guidelines
for optimal tuning are often unknown. Due to this fact, we
develop an adaptation scheme which is able to adapt the tun-
ing parameters in which the mixing time and convergence
rate are optimised without knowing any theoretical results in
advance.

We design a scheme that maximises theExpected Squared
Jumping Distance (ESJD). The ESJD is an efficiency mea-
sure which accounts for the jumping distances between two
consecutive states from a Markov chain which is highly
related to first order autocorrelation (Pasarica and Gelman
2010). Suppose that ξ ∈ R is a continuous tuning parameter
of a π -reversible transition kernel pξ . In the PARNI scheme,
the scaling parameter ω lies in the interval (0, 1), so we con-
sider a transformation ξ = logitεω such that ξ ∈ R. The
definition of ESJD given parameter ξ is given as follows

ESJD(ξ) =
∑

γ∈�

∑

γ ′∈�

⎛

⎝
p∑

j=1

(γ j − γ ′
j )
2

⎞

⎠π(γ )pξ (γ, γ ′).

(A.1)

If pξ is a Metropolis-Hastings transition kernel and can be
decomposed into a product of a proposal kernel Qξ withmass
function qξ and a term of the Metropolis-Hasting acceptance
probability αξ (γ, γ ′), the definition of the ESJD above is
equivalent to

ESJD(ξ)

=
∑

γ∈�

∑

γ ′∈�

⎛

⎝
p∑

j=1

(γ j − γ ′
j )
2

⎞

⎠π(γ )qξ (γ, γ ′)αξ (γ, γ ′).

(A.2)

The ESJD is often infeasible to compute since it involves
double sum over the sample space. To access the value of
ESJD, we consider an estimator Average Squared Jumping
Distance (ASJD) which depends on the past chain and ASJD
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is defined as follows:

ASJD(ξ) = 1

N

N−1∑

i=0

⎛

⎝
p∑

j=1

(γ
(i)
j − γ

(i+1)
j )2

⎞

⎠ (A.3)

or alternatively

ASJD(ξ) = 1

N

N−1∑

i=0

⎛

⎝
p∑

j=1

(γ
(i)
j − (γ (i))′j )2

⎞

⎠αξ (γ (i), (γ (i))′)

(A.4)

where (γ (i))′ is the proposal of γ (i) through Qξ . From above,
the main advance of using ASJD is that ASJD can be easily
estimated in each individual iteration.

The objective is to locate the value of ξ that leads to the
largest ASJD. This is equivalent to solving the following
optimisation problem of the tuning parameter

ξ∗ := argmax
ξ

ASJD(ξ). (A.5)

If objective function ESJD(ξ) is unimodal and smooth, ξ∗
can be found by solving the first order ordinary differential
equation

d

dξ
ASJD(ξ) = 0. (A.6)

The Robbins-Monro scheme can be applied here to adap-
tively update the optimal θ when those derivatives exist
analytically. In most cases, however, the derivatives are
not available analytically, which makes the Robbins-Monro
scheme impossible to use. The Kiefer–Wolfowitz scheme
(Kiefer and Wolfowitz 1952), on the other hand, is an alter-
native to the Robbins-Monro algorithmwhere the derivatives
are estimated using a finite difference method.

The following is how a Kiefer–Wolfowitz scheme pro-
ceeds. Let M(ξ) be an objective function with a maximum
θ∗. If M(ξ) is assumed to be unknown but some random
observations M(ξ) are given such that M(ξ) = E[M(ξ)],
ξ is updated following an iterative algorithm as follows

ξi+1 = ξi + ai

(M(ξi + ci ) − M(ξi − ci )

2ci

)

(A.7)

where ai and ci are two diminishing sequences of for-
ward positive step sizes and finite difference widths used
respectively. In each iteration, we need two independent
observations,M(ξi +ci ) andM(ξi −ci ), with tuning param-
eters ξi +ci and ξi −ci respectively. If the objective function
M(ξ) satisfies certain regularity conditions, it can be shown
that ξi will converge to the optimal value ξ∗ as n → ∞.

Blum (1954) show that this convergence is almost sure pro-
vided that some other conditions hold, most importantly that
the diminishing sequences ai and ci satisfy

1. ci → 0 as i → ∞;
2.

∑∞
i=0 ai = ∞;

3.
∑∞

i=0 ai ci < ∞;
4.

∑∞
i=0 a

2
i c

−2
i = ∞.

We design an adaptive MCMC sampler which combines
the Kiefer–Wolfowitz scheme and parallel chain implemen-
tation. The parallel chain implementation involves a number
of independent chains which only share the same tuning
parameters and provides independent observations as the
Kiefer–Wolfowitz scheme requires. We consider a sampler
which involves L parallel chains. In the sampler a new state
is proposed through the kernel Qξ , which is then accepted
with probability αξ . An adaptation scheme with the Kiefer–
Wolfowitz updates is given as follows: compute ai = i−φa

and ci = i−φc ; calculate ξ+ = ξi + ci and ξ− = ξi − cn ;
separate the N chains into two groups, L− and L+,; for
each l ∈ L+, propose new state (γ (l,i))′ using Qξ+(γ (l,i), ·),
accept (γ (l,i))′ with probability αξ+(γ (l,i), (γ (l,i))′; for each
l ∈ L−, propose new state (γ (l,i))′ using Qξ−(γ (l,i), ·),
accept (γ (l,i))′ with probability αξ−(γ (l,i), (γ (l,i))′); com-
pute the ASJD for the current iteration by averaging over the
chains in groups L+ and L− respectively as follows:

ASJD•,(i)

≈ 1

|L•|
∑

l∈L•

⎛

⎝
p∑

j=1

(γ
(l,i)
j − (γ (l,i))′j )2

⎞

⎠αθ•(γ (l,i), (γ (l,i))′)

(A.8)

where • is either + or −; update the tuning parameter for the
next iteration by

ξ (i+1) = ξ (i) + ai

(
ASJD+,(i) − ASJD−,(i)

2ci

)

. (A.9)

B Proofs

B.1 Proof of Proposition 1

The proof relies on Proposition 1 from Andrieu et al. (2020),
which in turn relies on Theorem 3 in the same work. The
proposition below is a concise summary of the two results
sufficient for our needs.

Proposition 4 Consider a Borel space (E, E) such that any
ξ ∈ E can be written ξ := (x, y) for x ∈ X and y ∈ Y.
Define the probability measure μ on E such that μ(dξ) :=
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π(dx)νx (dy). Given an involution φ : E → E, then the
deterministic Markov kernel

�(ξ, dξ ′) := a(ξ)δφ(ξ)(dξ ′) + (1 − a(ξ))δξ (dξ ′)

is μ-reversible, where a(ξ) := min (1, μ ◦ φ(dξ)/μ(dξ)) if
ξ ∈ S and 0 otherwise, for a suitably defined S ⊂ E (see
Theorem3(a) ofAndrieu et al. (2020) for details). In addition,
the marginal transition kernel

P(x, dx ′) :=
∫

Y
�((x, y), (dx ′, Y))νx (dy)

is both Markov and π -reversible.

Proof of Proposition 1 Define the probability mass function
μ(γ, γ ′, k) := π(γ )p(k|γ )qk(γ, γ ′). Then the algorithm
can be viewed as a Markov chain on the larger space E :=
� × � × K, which alternates between the following steps:

1. Re-sample k, γ ′|γ from its conditional distribution with
mass function p(k|γ )qk(γ, γ ′)

2. Perform a Metropolis step with deterministic proposal

φ

⎛

⎝
γ

γ ′
k

⎞

⎠ =
⎛

⎝
γ ′
γ

ρ(k)

⎞

⎠

and acceptance probability min
(
1, μ ◦ φ(γ, γ ′, k)/

μ(γ, γ ′, k)
)
.

Note that φ ◦φ(γ, γ ′, k) = (γ, γ ′, k), meaning φ is an invo-
lution. Therefore setting X := � and Y := � ×K, step 2 can
be identified with the deterministic kernel� in Proposition 4
above, and steps 1 and 2 combined can be identified with the
marginal kernel P on the state space �, which is therefore
π -reversible. ��

B.2 Proof of Proposition 2

Proof of Proposition 2 Recall the interval�2p
ε = (ε, 1−ε)2p,

Since η ∈ �
2p
ε , it is clear that pRNη (k|γ ) > ε p for all γ ∈ �

and k ∈ K. Recall that qTHINω,k is symmetric, so we have

qTHINω,k (γ, γ ′) = qTHINω,k (γ ′, γ ). The condition

pRNη (k|γ )qTHINω,k (γ, γ ′) > 0

⇐⇒ pRNη (k|γ ′)qTHINω,k (γ ′, γ ) > 0 (B.1)

follows immediately.
To show that pRNη (·|γ ) is a probability measure on K for

any γ ∈ �, we also need to show that

∑

k∈K
pRNη (k|γ ) = 1. (B.2)

Starting from the right hand side gives

∑

k∈K
pRNη (k|γ ) =

∑

k∈K

p∏

j=1

pRNη, j (k j |γ j )

=
p∏

j=1

(
pRNη, j (k j = 0|γ j ) + pRNη, j (k j = 1|γ j )

)
.

= 1

as required.
We then show qω,k(γ, ·) is a probability measure on set

N (γ, k) for any γ ∈ � and k ∈ K. Let J be a pro-
jection of k to a set J (k) consisting of the indices j for
which k j = 1 (i.e. J (k) = { j |k j = 1}). Starting from
Eq. (18) of Remark 4 together with the identity used above∫
�
p(dγ ) = ∏

j

∫
� j

p j (dγ j ), we obtain

∑

γ ′∈N (γ,k)

qTHINω,k (γ, γ ′)

=
∏

j∈J (k)

∑

γ ′
j∈{0,1}

(
ω

1 − ω

)dH (γ j ,γ
′
j )

(1 − ω)

=
∏

j∈J (k)

∑

γ ′
j∈{γ j ,1−γ j }

(
ω

1 − ω

)|γ j−γ ′
j |

(1 − ω)

=
∏

j∈J (k)

((1 − ω) + ω)

= 1

as required. ��

B.3 Proof of Theorem 1

Before proving Theorem 1, we first draw some conclusions
on acceptance probability of the ASI and ARN proposals.

Proposition 5 Suppose γ is the current state, γ ′ is the pro-
posed state and η ∈ �

2p
ε = (ε, 1 − ε)2p is fixed parameter.

For any k that constructs neighbourhood containing γ and
γ ′ and any choices of ξ ∈ �ε = (ε, 1 − ε) and ω ∈ �ε ,
the Metropolis-Hastings acceptance probability of the ARN
proposal, αARN

(ξη,ω),k , as in (17) is fixed. In addition, this term
is also the acceptance probability of the ASI proposal, i.e.

αARN
(ξη,ω),k(γ, γ ′) = αASI

ζη (γ, γ ′).

for any ζ ∈ �ε .

Proof of Proposition 5 Suppose that γ , γ ′ ∈ �, η ∈ �
2p
ε

are given and fixed. We consider all the k ∈ K such that
γ ′ ∈ N (γ, k). We are going to show that for any ξ and
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ω ∈ �ε , the acceptance probability αARN
θ,k (γ, γ ′) is free from

the choice of k, ξ and ω.
To locate the different positions between γ and γ ′, we

define the set J (γ, γ ′) := { j |γ j = γ ′
j } ⊆ J (k). From (17),

we have

αARN
θ,k (γ, γ ′) = min

{

1,
π(γ ′)pRN

ξηopt
(k|γ ′)qTHINω,k (γ ′, γ )

π(γ )pRN
ξηopt

(k|γ )qTHINω,k (γ, γ ′)

}

= min

{

1,
π(γ ′)pRN

ξηopt
(k|γ ′)

π(γ )pRN
ξηopt

(k|γ )

}

where the last equality follows since qTHINω,k is symmetric.

Substituting pRNξη yields

αARN
θ,k (γ, γ ′)

= min

⎧
⎨

⎩
1,

π(γ ′)
π(γ )

p∏

j=1

(ξ A j )
(1−γ ′

j )k j (1 − ξ A j )
(1−γ ′

j )(1−k j )(ξDj )
γ ′
j k j (1 − ξDj )

γ ′
j (1−k j )

(ξ A j )
(1−γ j )k j (1 − ξ A j )

(1−γ j )(1−k j )(ξDj )
γ j k j (1 − ξDj )

γ j (1−k j )

⎫
⎬

⎭

= min

⎧
⎨

⎩
1,

π(γ ′)
π(γ )

∏

j∈J (γ,γ ′)

(A j )
(1−γ ′

j )(Dj )
γ ′
j

(A j )
(1−γ j )(Dj )

γ j

⎫
⎬

⎭
.

The value of αARN
θ,k (γ, γ ′) only depends on the choice of η

and it does not involve the terms ξ , ω and k. Therefore, the
proposition is proved. In addition, this is also theMetropolis-
Hastings acceptance probability for ASI of proposing γ ′ to
γ following the definition of the ASI sampler. ��

Now we formally prove Theorem 1.

Proof of Theorem 1 Rewriting the transition kernel of pARN(ξη,ω)

gives

pARN(ξη,ω)(γ, γ ′) =
∑

k∈K
pRNξη (k|γ )qTHINω,k (γ, γ ′)αARN

(ξη,ω),k(γ γ ′)

= αASI
ζη (γ, γ ′)

∑

k∈K
pRNξη (k|γ )qTHINω,k (γ, γ ′)

(B.3)

for which the last line follows from Proposition 5 and the
fact that ζ = ξ × ω.

Recall the definitions of the conditional distribution of
k in (15) and the within-neighbourhood proposal in (18).
Together with η = (A, D), we have

pRNξη (k|γ ) =
p∏

j=1

pRNξη, j (k j |γ j )

=
p∏

j=1

(ξ A j )
(1−γ j )k j (1 − ξ A j )

(1−γ j )(1−k j )

(ξDj )
γ j k j (1 − ξDj )

γ j (1−k j )

and

qTHINω,k (γ, γ ′) =
(

ω

1 − ω

)dH (γ,γ ′)
(1 − ω)

∑p
j=1 k j

=
(

ω

1 − ω

)dH (γ,γ ′) p∏

j=1

(1 − ω)k j

where the last line follows since (1 − ω)k j = 1 if k j = 0.
Substituting the above into (B.3) yields

pARN(ξη,ω)(γ, γ ′) = αASI
ζη (γ, γ ′)

∑

k∈K

⎡

⎣
p∏

j=1

(ξ A j )
(1−γ j )k j (1 − ξ A j )

(1−γ j )(1−k j )

(ξDj )
γ j k j (1 − ξDj )

γ j (1−k j )
(

ω

1 − ω

)dH (γ,γ ′)
(1 − ω)k j

]

.

(B.4)

Let J (γ, γ ′) be a set which consists of the indices j for
which γ j = γ ′

j and J (γ, γ ′)c be the complement to J (γ, γ ′).
By definition k j must be 1 when j ∈ J (γ, γ ′) and k j can
take values either 0 or 1 when j ∈ J (γ, γ ′)c. Continuing
from (B.4), we divide j = 1 to p into two groups, J (γ, γ ′)
and J (γ, γ ′)c, and obtain

pARN(ξη,ω)(γ, γ ′)

= αASIζη (γ, γ ′)
(

ω

1 − ω

)|J (γ,γ ′)|

∏

j∈J (γ,γ ′)

(
(ξ A j )

(1−γ j )(ξDj )
γ j (1 − ω)

)

×
∏

j∈J (γ,γ ′)c

[ ∑

k j∈{0,1}
(ξ A j )

(1−γ j )k j (1 − ξ A j )
(1−γ j )(1−k j )

(ξDj )
γ j k j (1 − ξDj )

γ j (1−k j )(1 − ω)
k j

]
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= αASIζη (γ, γ ′)
∏

j∈J (γ,γ ′)

(
(ξ A j )

(1−γ j )(ξDj )
γ j · ω

) ∏

j∈J (γ,γ ′)c

×
(
(1 − ξ A j )

1−γ j (1 − ξDj )
γ j + (ξ A j )

1−γ j (ξDj )
γ j (1 − ω)

)

︸ ︷︷ ︸
I j

We am going to further investigate the terms I j for j ∈
J (γ, γ ′)c. Clearly that, if γ j = 1, then

I j = (1 − ξDj ) + ξDj (1 − ω)

= 1 − ωξDj ,

similarly that when γ j = 0, we have

I j = (1 − ξ A j ) + ξ A j (1 − ω)

= 1 − ωξ A j .

Putting everything back to pARNξη,ω , and reconstructing the
product in j from 1 to p gives

pARNξη,ω (γ, γ ′) = αASIζη (γ, γ ′) ×
∏

j∈J (γ,γ ′)
(ξωA j )

(1−γ j )(ξωDj )
γ j

×
∏

j∈J (γ,γ ′)c
(1 − ξωA j )

(1−γ j )(1 − ξωDj )
γ j

= αASIζη (γ, γ ′) ×
p∏

j=1

[

(ξωA j )
(1−γ j )γ

′
j (ξωDj )

γ j (1−γ ′
j )

(1 − ξωA j )
(1−γ j )(1−γ ′

j )(1 − ξωDj )
γ j γ

′
j

]

.

Rewriting the above in terms of ζ = ξ × ω yields

pARN(ξη,ω)(γ, γ ′) = αASI
ζη (γ, γ ′)

×
p∏

j=1

[
(ζ A j )

(1−γ j )γ
′
j (ζDj )

γ j (1−γ ′
j )

× (1 − ζ A j )
(1−γ j )(1−γ ′

j )(1 − ζDj )
γ jγ

′
j

]

= pASIζ×η(γ, γ ′)

as required. ��

B.4 Proof of Corollary 1

Proof of Corollary 1 It is clear that the argument holds from
the Theorem 1 and its proof. ��

B.5 Proof of Proposition 3

Proof We define J (k) to be a set that consists of the positions
that k j = 1 (i.e. J (k) = { j |k j = 1}) and J (γ, γ ′) to be a
set which consists of the different variables (i.e. J (γ, γ ′) =
{ j |γ j = γ ′

j }). They obey the relationship J (γ, γ ′) ⊆ J (k) if

γ ′ ∈ N (γ, k). The j-th conditional distribution of k j , pRNη, j ,

satisfies

pRNη, j (k j |γ j ) = pRNη, j (k j |γ ′
j )

if j is outside of J (γ, γ ′). This is because γ j = γ ′
j for

j ∈ J (γ, γ ′).
Startwith simplifying the ratio pRNη (k|γ ′)/pRNη (k|γ ). Fol-

lowing the similar steps in the proof of Proposition 5 and
suppose γ j = 1 − γ ′

j for all j ∈ J (γ, γ ′) and η = (A, D),
we can show the following

pRNη (k|γ ′)
pRNη (k|γ )

=
∏

j∈J (γ,γ ′)

A
1−γ j
j D

γ j
j

A
γ j
j D

1−γ j
j

=
∏

j∈J (γ,γ ′)

(
A j

D j

)1−2γ j

=
∏

j∈J (γ,γ ′)

(
A j

D j

)2γ ′
j−1

.

(B.5)

Next step is simplifying the second ratio qPARNIθ,k (γ ′, γ )/

qPARNIθ,k (γ, γ ′) and showing that this term can be decomposed
into 3 parts. Since the sampling process is sequential, the
model γ (r) is proposed from γ (r−1) at time r . For reversed
move, the model γ ′(r) is proposed from γ ′(r − 1) at time r .
Moreover, γ (0) and γ ′(pk) are the current state γ and γ ′(pk)
and γ ′(0) are the final proposal γ ′. We correlate r and r ′ =
pk−r+1 since γ (r) = γ ′(r ′−1) and Kr = K ′

r ′ .We consider
the ratio qPARNI

θ,K ′
r ′

(γ ′(r ′ −1), γ ′(r ′))/qPARNIθ,Kr
(γ (r −1), γ (r)).

From (28) and therefore have

qPARNIθ,Kr ′ (γ ′(r ′ − 1), γ ′(r ′))
qPARNIθ,Kr

(γ (r − 1), γ (r))

=
g

(
π(γ ′(r ′))pRNη (e(Kr ′ )|γ ′(r ′))

π(γ ′(r ′−1))pRNη (e(Kr ′ )|γ ′(r ′−1))

)

/Z ′(r ′)

g

(
π(γ (r))pRNη (e(Kr )|γ (r))

π(γ (r−1))pRNη (e(Kr )|γ (r−1))

)

/Z(r)
.

Since g is a balancing function and satisfies g(t) = tg(1/t)
for any positive t and γ (r) = γ ′(r ′ + 1), we have

qPARNIθ,Kr ′ (γ ′(r ′ − 1), γ ′(r ′))
qPARNIθ,Kr

(γ (r − 1), γ (r))

= π(γ (r − 1))pRNη (e(Kr )|γ (r − 1))

π(γ (r))pRNη (e(Kr )|γ (r))
· Z(r)

Z ′(r ′)
.

The product of the above ratio from r = 1 to pk yields the
term qPARNIθ,k (γ ′, γ )/qPARNIθ,k (γ, γ ′) as follows

qPARNIθ,k (γ ′, γ )

qPARNIθ,k (γ, γ ′)
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=
∏pk

r ′=1 q
PARNI
θ,Kr ′ (γ ′(r ′ − 1), γ ′(r ′))

∏pk
r=1 q

PARNI
θ,Kr

(γ (r − 1), γ (r))

=
pk∏

r=1

π(γ (r − 1))pRNη (e(Kr )|γ (r − 1))

π(γ (r))pRNη (e(Kr )|γ (r))
· Z(r)

Z ′(r ′)

=
( pk∏

r=1

π(γ (r − 1))

π(γ (r))

)

︸ ︷︷ ︸
I

·
( pk∏

r=1

pRNη (e(Kr )|γ (r − 1))

pRNη (e(Kr )|γ (r))

)

︸ ︷︷ ︸
II

·

·
( pk∏

r=1

Z(r)

Z ′(r)

)

︸ ︷︷ ︸
III

since r ′ = pk − r .
The first term I is equal to

I = π(γ )

π(γ (1))

π(γ (1))

π(γ (2))
· · · π(γ (pk − 2))

π(γ (pk − 1))

π(γ (pk − 1))

π(γ ′)
.

Most terms can be cancelled out and this leaves the first
numerator and the last denominator

I = π(γ )

π(γ ′)
.

We now deal with the second term II. Substituting the
values gives

pRNη (e(Kr )|γ (r − 1))

pRNη (e(Kr )|γ (r)))
=

(
AKr

DKr

)1−2γ (r)Kr
.

We know that the positions K1, . . . , Kpk are distinct and the
vectors e(K1), . . . , e(Kpk ) can recover the auxiliary variable
k. Therefore, we obtain

II =
∏

j∈J (γ,γ ′)

(
A j

D j

)1−2γ j

.

Following the above arguments, the product of sequence
j = 1, . . . , pk can be simplified

qPARNIθ,k (γ ′, γ )

qPARNIθ,k (γ, γ ′)
= π(γ )

π(γ ′)
︸ ︷︷ ︸

I

·
∏

j∈J (γ,γ ′)

(
A j

D j

)1−2γ j

︸ ︷︷ ︸
II

·
pk∏

r=1

Z(r)

Z ′(r)
︸ ︷︷ ︸

III

(B.6)

TheMetropolis-Hastings acceptance probability in (31) is

αPARNI
θ,k (γ, γ ′)

=
{

1,
π(γ ′)pRNη (k|γ ′)qPARNIθ,k (γ ′, γ )

π(γ )pRNη (k|γ )qPARNIθ,k (γ, γ ′)

}

= min

{

1,

(
π(γ ′)
π(γ )

· I
)

·
(
pRNη (k|γ ′)
pRNη (k|γ )

· II
)

· III
}

From (B.5) and (B.6), we have

π(γ ′)
π(γ )

· I = 1

pRNη (k|γ ′)
pRNη (k|γ )

· II = 1

and we therefore obtain

αPARNI
θ,k (γ, γ ′) = min{1, III}

= min

⎧
⎨

⎩
1,

pk∏

j=1

Z( j)

Z ′( j)

⎫
⎬

⎭

as required. ��

B.6 Proof of Lemma 1

The proof of Lemma 1 is structured as proof of Lemma 1
in Griffin et al. (2021). We first recall a tailored version of
a general result that is well-known in the literature, see e.g.
Theorem 8 of Roberts and Rosenthal (2004), Theorem 1 of
Roberts and Rosenthal (2007).

Proposition 6 Consider a family of π -invariant Markov ker-
nels {Pθ }θ∈� defined on some countable state space �. If
there exists ε > 0 such that for every (γ, γ ′) ∈ � × � it
holds that

inf
θ

Pθ (γ, γ ′) ≥ επ(γ ′), (B.7)

then the family {Pθ }θ∈� satisfies a simultaneous uniform
ergodicity condition. Namely, for every δ > 0 there exists
a finite N := N (δ) such that

‖PN
θ (γ, ·) − π(·)‖T V < δ

for all γ ∈ � and all θ ∈ �.

Proof of Lemma 1 Wefirst introduce some preliminary work.
Since θ = (η, ω) ∈ �

2p+1
ε = (ε, 1 − ε)2p+1, we have

ε p ≤ pRNη (k|γ ) ≤ (1 − ε)p (B.8)

for any k and γ . Similar arguments implies that

(
ε

1 − ε

)p

≤ pRNη (k|γ ′)
pRNη (k|γ )

≤
(
1 − ε

ε

)p

. (B.9)
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From assumption (A.2), we know that there exists a constant
� such that

1

�
≤ π(γ ′)

π(γ )
≤ �. (B.10)

Let tγ,γ ′,k be

tγ,γ ′,k = π(γ ′)
π(γ )

· pRNη (k|γ ′)
pRNη (k|γ )

. (B.11)

Using (B.9) and (B.10) leads to

1

�
·
(

ε

1 − ε

)p

≤ tγ,γ ′,k ≤ � ·
(
1 − ε

ε

)p

, (B.12)

for any γ, γ ′ ∈ � and k ∈ K, thus,

g

(
1

�
·
(

ε

1 − ε

)p)

≤ g(tγ,γ ′,k) ≤ g

(

� ·
(
1 − ε

ε

)p)

since g is a non-decreasing function.We define the following
qualities

g↑ := g

(

� ·
(
1 − ε

ε

)p)

g↓ := g

(
1

�
·
(

ε

1 − ε

)p)

Therefore, for all normalising constants Z(r), it is bounded
between Z↓ and Z↑ where

Z↓ := 2εg↓ (B.13)

Z↑ := 2(1 − ε)g↑ (B.14)

due to the fact that ω ∈ (ε, 1 − ε).
Suppose k and corresponding K are given, we now bound

each individual kernel qPARNIθ,Kr
(γ, γ ′) for any γ and r from 1

to pk . Staring from the definition in (28),

qPARNIθ,Kr
(γ, γ ′) =g

(
π(γ ′)pRNη (e(Kr )|γ ′)
π(γ )pRNη (e(Kr )|γ )

)

qTHINω,e(Kr )
(γ, γ ′)/Z(r)

≥ εg↓

Z(r)

≥ εg↓

2(1 − ε)g↑ (B.15)

where the last is followed by (B.14). We next consider the
full update kernel of PARNI

qPARNIθ,k (γ, γ ′) =
pk∏

r=1

qPARNIθ,Kr
(γ (r − 1), γ (r)) (B.16)

where γ (0) = γ and γ (pk) = γ ′. From (B.15), the full
update kernel is bounded as follows

qPARNIθ,k (γ, γ ′) ≥
(

εg↓

2(1 − ε)g↑

)pk

≥
(

εg↓

2(1 − ε)g↑

)p

(B.17)

since pk ≤ p for all k. We also bound the Metropolis-
Hastings acceptance probability in (31) from below

αPARNI
θ,k (γ, γ ′) = min

{

1,
π(γ ′)pRNη (k|γ ′)qPARNIθ,k (γ ′, γ )

π(γ )pRNη (k|γ )qPARNIθ,k (γ, γ ′)

}

≥ π(γ ′)pRNη (k|γ ′)qPARNIθ,k (γ ′, γ )

≥ πm

(
εg↓

2(1 − ε)g↑

)p

ε p

where πm = minγ π(γ ).
Finally, we can chose b such that

b = πm

(
ε2g↓

2(1 − ε)g↑

)2p

and therefore

pPARNIθ (γ, γ ′) =
∑

k∈K
pPARNIθ,k (γ, γ ′)

=
∑

k∈K
qPARNIθ,k (γ, γ ′)αPARNI

θ,k (γ, γ ′)

≥
∑

k∈K
b ≥ b.

Since π(γ ′) < 1 for any γ ′ ∈ �, it follows that Eq. (B.7) is
satisfied for {pPARNIθ }θ∈�, and therefore by Proposition 6 the
family of kernels is simultaneously uniformly ergodic.

For L multiple chains, the arguments are similar, but
instead, the target distribution is now π⊗L(γ ⊗L) for γ ⊗L ∈
�⊗L and �⊗L is (1, b⊗L , π⊗L(·))-small for which

b⊗L = π L
m

(
ε2g↓

2(1 − ε)g↑

)2pL

.

��

B.7 Proof of Lemma 2

Before proving the lemma, we require the following inequal-
ities and its generalised version

Lemma 3

∣
∣
∣
∣

p∏

j=1

a j −
p∏

j=1

b j

∣
∣
∣
∣ ≤

p∑

j=1

|a j − b j | (B.18)

123



   84 Page 30 of 52 Statistics and Computing            (2022) 32:84 

for all a j , b j ∈ [0, 1].
Proof of Lemma 3 Let D(p) is the LHS of (B.18)

D(p) =
p∏

j=1

a j −
p∏

j=1

b j . (B.19)

In addition, we define a telescopic sum S(k) such that

S(p) =
p∑

i=1

a1 × · · · × ai−1(ai − bi )bi+1 × · · · × bp.

(B.20)

The proof of Lemma 3 is structured as follows: (1) show
that D(p) = S(p) for p ≥ 2 by induction; (2) using trian-
gular inequality and condition that all a j and b j are bounded
between 0 and 1 to prove the LHS of (B.18) is equal to its
RHS.

Step (1), we prove

D(p) = S(p) (B.21)

for p ≥ 2 by induction.
Base case:When p = 2, rearranging the RHS of (B.21)

S(2) = (a1 − b1)b2 + a1(a2 − b2)

= a1b2 − b1b2 + a1a2 − a1b2

= a1a2 − b1b2 = D(2)

which equals to the RHS. We therefore proved that (B.21)
holds when p = 2.

Induction step: Let k ≤ 2 be given and suppose (B.21) is
true for p = k. Then

D(k + 1) =
k+1∏

j=1

a j −
k+1∏

j=1

b j

=
⎛

⎝
k∏

j=1

a j

⎞

⎠ ak+1 −
⎛

⎝
k∏

j=1

b j

⎞

⎠ bk+1.

By applying (a1−b1)b2+a1(a2−b2) = a1a2−b1b2 which
we just showed, we obtain

D(k + 1) =
⎛

⎝
k∏

j=1

a j −
k∏

j=1

b j

⎞

⎠ bk+1

+
⎛

⎝
k∏

j=1

a j

⎞

⎠ (ak+1 − bk+1)

= S(k)bk+1 +
⎛

⎝
k∏

j=1

a j

⎞

⎠ (ak+1 − bk+1)

= S(k + 1).

Therefore, (B.21) holds for p = k + 1.
Conclusion: By the principle of induction, (B.21) holds

for p ≥ 2.
Step (2), we start with the RHS of (B.18) and use the

above statement

∣
∣
∣
∣

p∏

j=1

a j −
p∏

j=1

b j

∣
∣
∣
∣ =

∣
∣
∣
∣D(p)

∣
∣
∣
∣ =

∣
∣
∣
∣S(p)

∣
∣
∣
∣

=
∣
∣
∣
∣

p∑

i=1

a1 × · · · × ai−1(ai − bi )bi+1 × · · · × bp

∣
∣
∣
∣.

Applying the triangular inequality gives

∣
∣
∣
∣

p∏

j=1

a j −
p∏

j=1

b j

∣
∣
∣
∣

≤
p∑

i=1

∣
∣
∣
∣a1 × · · · × ai−1(ai − bi )bi+1 × · · · × bp

∣
∣
∣
∣

×
p∑

i=1

a1 × · · · × ai−1

∣
∣
∣
∣ai − bi

∣
∣
∣
∣bi+1 × · · · × bp

where the last term follows since all a j and b j are non-
negative. Because a j and b j are bounded between 0 and 1,
we then have

∣
∣
∣
∣

p∏

j=1

a j −
p∏

j=1

b j

∣
∣
∣
∣

p∑

i=1

∣
∣
∣
∣ai − bi

∣
∣
∣
∣

which is the inequality (B.18). Therefore, we completed the
proof. ��

We can generalise the above lemma and obtain the fol-
lowing.

Lemma 4 If a j , b j ≤ C for some constant C > 0, then

∣
∣
∣
∣

p∏

j=1

a j −
p∏

j=1

b j

∣
∣
∣
∣ ≤ C1

p∑

j=1

|a j − b j | (B.22)

for some constant C1. C1 can be chosen to be C p−1.

Proof

∣
∣
∣
∣

p∏

j=1

a j −
p∏

j=1

b j

∣
∣
∣
∣ = C p

∣
∣
∣
∣

p∏

j=1

a j

C
−

p∏

j=1

b j

C

∣
∣
∣
∣ := A

As a j , b j ≤ C , a j/C and b j/C are smaller than 1.

A ≤ C p
p∑

j=1

∣
∣
∣
∣
a j

C
− b j

C

∣
∣
∣
∣
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= C p−1
p∑

j=1

|a j − b j |

as required. ��
The following lemma shows the diminishing rate of the

proposal thinning parameterω for both schemes (the PARNI-
KW and PARNI-RM proposals).

Lemma 5 The diminishing rate of adaptive parameter ω in
both (35) and (36) between two consecutive iterations satis-
fies

|ω(i+1) − ω(i)| = O(i−λ) (B.23)

for some λ > 0. In particular, setting φi = i−λ for λ ∈
(1/2, 1) in (35), ai = i−1 and ci = i−0.5 in (36)as suggested,
(B.23) holds for λ ∈ (1/2, 1) and λ = 0.5 respectively.

Proof of Lemma 5 The update rule of (35) immediately leads
to

|ω(i+1) − ω(i)| = O(i−λ)

for λ ∈ (1/2, 1).
For the Kiefer–Wolfowitz updating law in (36), the val-

ues of tuning parameters ω adopted involve diminishing
sequence ci . We are therefore interested in

∣
∣
∣
∣|ω(i+1) ± ci+1| − |ω(i) ± ci |

∣
∣
∣
∣. (B.24)

By applying the reverse triangle inequality, we obtain

∣
∣
∣
∣|ω(i+1) ± ci+1| − |ω(i) ± ci |

∣
∣
∣
∣

≤
∣
∣
∣
∣(ω

(i+1) ± ci+1) − (ω(i) ± ci )

∣
∣
∣
∣

≤
∣
∣
∣
∣ω

(i+1) + ci+1 − ω(i) + ci

∣
∣
∣
∣

≤
∣
∣
∣
∣ω

(i+1) − ω(i)
∣
∣
∣
∣ +

∣
∣
∣
∣ci+1 + ci

∣
∣
∣
∣ := S1 + S2,

Starting from the first term S1 and rearranging (A.9), we
obtain

S1 ≤
∣
∣
∣
∣ai

(
ASJD+,(i) − ASJD−,(i)

2ci

) ∣
∣
∣
∣

≤p

∣
∣
∣
∣
ai
ci

∣
∣
∣
∣

=O(i−(φa−φc)) = O(i−0.5)

where the second line follows from the fact that the expected
jumping distances are bounded above by p.

Substituting the definition of ci into S2 yields

S2 ≤
∣
∣
∣
∣(i + 1)−φc + (i)−φc

∣
∣
∣
∣

≤
∣
∣
∣
∣2i

−φc

∣
∣
∣
∣

=O(i−φc ) = O(i−0.5).

Since both terms S1 and S2 are of the same order of
O(i−0.5), the Eq. (B.24) is also O(i−0.5), which completes
the proof. ��

We also require the following lemma to bound transi-
tion kernels by proposal kernels. The lemma and its proof
is inspired by Lemma 4.21 in Łatuszyński et al. (2013).

Lemma 6 The sub-proposal kernel in (39) and sub-transition
kernel in (41) obey the following relationship:

sup
γ∈�

sup
γ ′∈�

sup
k∈K

∣
∣
∣
∣p

PARNI
θ(i+1),k(γ, γ ′) − pPARNI

θ(i),k (γ, γ ′)
∣
∣
∣
∣

≤ C sup
γ∈�

sup
γ ′∈�

sup
k∈K

∣
∣
∣
∣ψ

PARNI
θ(i+1),k(γ, γ ′) − ψPARNI

θ(i),k (γ, γ ′)
∣
∣
∣
∣

(B.25)

for some constant C < ∞.

Proof of Lemma 6 Let the left-hand side and right-hand side
of (B.25) be L and R respectively, namely

L = sup
γ∈�

sup
γ ′∈�

sup
k∈K

∣
∣
∣
∣p

PARNI
θ(i+1),k(γ, γ ′) − pPARNI

θ(i),k (γ, γ ′)
∣
∣
∣
∣ (B.26)

R = sup
γ∈�

sup
γ ′∈�

sup
k∈K

∣
∣
∣
∣ψ

PARNI
θ(i+1),k(γ, γ ′) − ψPARNI

θ(i),k (γ, γ ′)
∣
∣
∣
∣.

(B.27)

Starting from the definition of sub-proposal kernel

pPARNIθ,k (γ, γ ′) = ψPARNI
θ,k (γ, γ ′)αPARNI

θ,k (γ, γ ′) + I{γ = γ ′}
∑

γ ′∈�

ψPARNI
θ,k (γ, γ ′)(1 − αPARNI

θ,k (γ, γ ′))

and substituting it into the left-hand side of (B.25), we obtain

∣
∣
∣
∣p

PARNI
θ(i+1),k(γ, γ ′) − pPARNI

θ(i),k (γ, γ ′)
∣
∣
∣
∣

≤
∣
∣
∣
∣ψ

PARNI
θ(i+1),k(γ, γ ′)αPARNI

θ(i+1),k(γ, γ ′)

− ψPARNI
θ(i),k (γ, γ ′)αPARNI

θ(i),k (γ, γ ′)
∣
∣
∣
∣
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+ I{γ = γ ′}
∑

γ ′∈�

∣
∣
∣
∣ψ

PARNI
θ(i+1),k(γ, γ ′)(1 − αPARNI

θ(i+1),k(γ, γ ′))

− ψPARNI
θ(i),k (γ, γ ′)(1 − αPARNI

θ(i),k (γ, γ ′))
∣
∣
∣
∣ := I + II

Starting with the term I and substituting in the definition
of Metropolis-Hastings acceptance probability in (31) gives

I =
∣
∣
∣
∣min{ψPARNI

θ(i+1),k(γ, γ ′), π(γ ′)
π(γ )

ψPARNI
θ(i+1),k(γ

′, γ )}

− min{ψPARNI
θ(i),k (γ, γ ′), π(γ ′)

π(γ )
ψPARNI

θ(i),k (γ ′, γ )}
∣
∣
∣
∣ (B.28)

Using |min{a, b}−min{c, d}| ≤ |a− c|+ |b− d| to further
split I

I ≤ |ψPARNI
θ(i+1),k(γ, γ ′) − ψPARNI

θ(i),k (γ, γ ′)|

+ π(γ ′)
π(γ )

|ψPARNI
θ(i+1),k(γ

′, γ ) − ψPARNI
θ(i),k (γ ′, γ )|

≤ (1 + �)R (B.29)

where the last line follows from the assumption (A.2). An
analogous calculation gives

II ≤ (2 + K )R, (B.30)

which together with (B.29) implies that

∣
∣
∣
∣p

PARNI
θ(i+1),k(γ, γ ′) − pPARNI

θ(i),k (γ, γ ′)
∣
∣
∣
∣ ≤ (3 + 2�)R

for any values of γ , γ ′, k and O , hence, it is enough to prove

L ≤ C · R (B.31)

for C = (3 + 2�) as required. ��
The proof of Lemma 2 is structured similarly to the proof

of Lemma 2 in Griffin et al. (2021).

Proof of Lemma 2 The proof is structured as follows: firstly,
we re-write the problem as a sum of sub-transition kernels
and bound the sub-transition kernels by sub-proposal kernels;
secondly, we break sub-proposal kernels into various parts;
lastly, we bound each part individually and hence bound the
proposal kernels.

Starting from the total variation norm in (51) and substi-
tuting in the definition of PPARNI

θ in (40), we have

sup
γ∈�

‖PPARNI
θ(i+1) (γ, ·) − PPARNI

θ(i) (γ, ·)‖T V

= sup
γ∈�

∑

γ ′∈�

∑

k∈K

∣
∣
∣
∣p

PARNI
θ(i+1),k(γ, γ ′) − pPARNI

θ(i),k (γ, γ ′)
∣
∣
∣
∣

≤ C1 sup
γ∈�

sup
γ ′∈�

sup
k∈K

∣
∣
∣
∣p

PARNI
θ(i+1),k(γ, γ ′) − pPARNI

θ(i),k (γ, γ ′)
∣
∣
∣
∣

:= I

for some constant C1 < ∞. Using Lemma 6, the problem is
reduced to bounding the largest variations in two consecutive
proposal kernels

I ≤ C2 sup
γ∈�

sup
γ ′∈�

sup
k∈K

∣
∣
∣
∣ψ

PARNI
θ(i+1),k(γ, γ ′) − ψPARNI

θ(i),k (γ, γ ′)
∣
∣
∣
∣ (B.32)

for some constant C2 < ∞. Plugging in the definition of
ψPARNI

θ,k into (39), therefore,

I ≤ C3 sup
γ∈�

sup
γ ′∈�

sup
k∈K

∣
∣
∣
∣p

RN
η(i+1) (k|γ )qPARNI

θ(i+1),k(γ, γ ′) − pRN
η(i) (k|γ )qPARNI

θ(i),k (γ, γ ′)
∣
∣
∣
∣

(B.33)

for some constant C3 < ∞. Applying Lemma 3 to (B.33),
we obtain

I ≤ C3 sup
γ∈�

sup
γ ′∈�

sup
k∈K

( ∣
∣
∣
∣p

RN
η(i+1) (k|γ ) − pRN

η(i) (k|γ )

∣
∣
∣
∣

︸ ︷︷ ︸
II

+
∣
∣
∣
∣q

PARNI
θ(i+1),k(γ, γ ′) − qPARNI

θ(i),k (γ, γ ′)
∣
∣
∣
∣

︸ ︷︷ ︸
III

)

.

Now we move our attention to the next part of the proof
where we are going to bound terms II and III respectively.

Starting with II, recall the definition of pRNη in (15) and
η = (A, D), we have

pη(k|γ ) =
p∏

j=1

pη, j (k j |γ j )

=
p∏

j=1

(
A j

)(1−γ j )k j (1 − A j
)(1−γ j )(1−k j )

(
Dj

)γ j (1−k j ) (1 − Dj
)γ j k j .

Following similar arguments to the proof of Lemma 2 of
Griffin et al. (2021), we obtain

II ≤
p∑

j=1

max
{
|A(i+1)

j − A(i)
j |, |D(i+1)

j − D(i)
j |

}

≤pmax

{

max
j

{
|A(i+1)

j − A(i)
j |

}
,max

j

{
|D(i+1)

j − D(i)
j |

}}

.
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From the definitions of A j and Dj , we have

|A(i+1)
j − A(i)

j | =
∣
∣
∣
∣min

{

1,
π̃

(i+1)
j

(1 − π̃
(i+1)
j )

}

− min

{

1,
π̃

(i)
j

(1 − π̃
(i)
j )

} ∣
∣
∣
∣ (B.34)

|D(i+1)
j − D(i)

j | =
∣
∣
∣
∣min

{

1,
(1 − π̃

(i+1)
j )

π̃
(i+1)
j

}

− min

{

1,
(1 − π̃

(i)
j )

π̃
(i)
j

} ∣
∣
∣
∣. (B.35)

The pseudo-code of the PARNI sampler in (3) states that
π̃

(i)
j = π0+(1−2π0)π̂

(i)
j and π̂

(i)
j are theRao-Blackwellised

estimates of posterior inclusion probabilities π j . Recall the
definition of γ− j which is vector of γ without γ j (i.e. γ− j =
(γ1, . . . , γ j−1, γ j+1, . . . , γp)). Note that

π̂
(i)
j = 1

i

i∑

τ=1

Pr(γ j = 1|y, γ (τ)
− j ) (B.36)

where

Pr(γ j = 1|y, γ (τ)
− j )

= π(γ j = 1, γ (τ)
− j |y)

π(γ j = 1, γ (τ)
− j |y) + π(γ j = 0, γ (τ)

− j |y)
(B.37)

for all j from 1 to p, and therefore

|π̂ (i+1)
j − π̂

(i)
j |

=
∣
∣
∣
∣

i

i + 1
π̂

(i)
j + 1

i + 1
Pr(γ j = 1|y, γ (i+1)

− j ) − π̂
(i)
j

∣
∣
∣
∣

≤
∣
∣
∣
∣

i

i + 1
π̂

(i)
j − π̂

(i)
j

∣
∣
∣
∣ + 1

i + 1
Pr(γ j = 1|y, γ (i+1)

− j )

≤ 2

i + 1

Note that fπ0(x) = min{1, (π0 + (1 − 2π0x))/(π0 + (1 −
2π0(1 − x))} is Lipshitz with constant 1/π0, we obtain

∣
∣
∣
∣min

{

1,
π̃

(i+1)
j

(1 − π̃
(i+1)
j )

}

− min

{

1,
π̃

(i)
j

(1 − π̃
(i)
j )

} ∣
∣
∣
∣

≤ 1

π0
|π̂ (i+1)

j − π̂
(i)
j |

≤ 1

π0
· 2

i + 1
.

A similar conclusion can be drawn for each Dj , meaning

II ≤ C4i
−1 (B.38)

for some constant C4 < ∞.
The second term, III, is more complicated. We start by

substituting sub proposal kernels in (28) to III yielding

III =
∣
∣
∣
∣

pk∏

r=1

qPARNI
θ(i+1),Kr

(γ (r − 1), γ (r))

−
pk∏

r=1

qPARNI
θ(i),Kr

(γ (r − 1), γ (r))

∣
∣
∣
∣ (B.39)

where γ (0) = γ and γ (pk) = γ ′. Applying Lemma 3 to
(B.39), we have

III ≤
pk∑

r=1

∣
∣
∣
∣q

PARNI
θ(i+1),Kr

(γ (r − 1), γ (r))

− qPARNI
θ(i),Kr

(γ (r − 1), γ (r))

∣
∣
∣
∣

≤ pmax
r

∣
∣
∣
∣q

PARNI
θ(i+1),Kr

(γ (r − 1), γ (r))

− qPARNI
θ(i),Kr

(γ (r − 1), γ (r))

∣
∣
∣
∣

:= IV.

The sub-proposal kernels typically contain two moves,
either flipping position Kr or keeping it. Term IV is smaller
than the maximum probability of these two moves. Let V
be the absolute difference in flipping and VI be the absolute
difference in keeping, then

IV ≤ q max
r

{max {V,VI}}.

We next consider terms V and VI. Starting with V and sub-
stituting (28) in V gives

V =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ω(i+1)g

(
π(γ (r))

π(γ (r−1))

(
A(i+1)
Kr

D(i+1)
Kr

)γ (r)Kr −γ (r−1)Kr
)

Z (i+1)(r)

−
ω(i)g

(
π(γ (r))

π(γ (r−1))

(
A(i)
Kr

D(i)
Kr

)γ (r)Kr −γ (r−1)Kr
)

Z (i)(r)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

.

Reduce the fractions to a common denominator to yield
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V =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ω(i+1)g

(
π(γ (r))

π(γ (r−1))

(
A(i+1)
Kr

D(i+1)
Kr

)γ d (r)
)

Z (i)(r) − ω(i)g

(
π(γ (r))

π(γ (r−1))

(
A(i)
Kr

D(i)
Kr

)γ d (r)
)

Z (i+1)(r)

Z (i+1)(r)Z (i)(r)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

≤ 1

(Z↓)2

∣
∣
∣
∣
∣
∣
∣

ω(i+1)g

⎛

⎜
⎝

π(γ (r))

π(γ (r − 1))

(
A(i+1)
Kr

D(i+1)
Kr

)γ d (r)
⎞

⎟
⎠ Z (i)(r) − ω(i)g

⎛

⎜
⎝

π(γ (r))

π(γ (r − 1))

(
A(i)
Kr

D(i)
Kr

)γ d (r)
⎞

⎟
⎠ Z (i+1)(r)

∣
∣
∣
∣
∣
∣
∣

where γ d(r) = γ (r)Kr −γ (r−1)Kr and the last line follows
from (B.13) in the proof of Lemma 1 where all normalising
constants can be bounded above and below. Using Lemma
4, we obtain

V ≤ C5

∣
∣
∣ω(i+1) − ω(i)

∣
∣
∣

︸ ︷︷ ︸
:=VII

+ C6

∣
∣
∣
∣
∣
∣
∣
g

⎛

⎜
⎝

π(γ (r))

π(γ (r − 1))

(
A(i+1)
Kr

D(i+1)
Kr

)γ d (r)
⎞

⎟
⎠ − g

⎛

⎜
⎝

π(γ (r))

π(γ (r − 1))

(
A(i)
Kr

D(i)
Kr

)γ d (r)
⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸
:=VIII

+ C7

∣
∣
∣Z (n+1)(r) − Z (n)(r)

∣
∣
∣

︸ ︷︷ ︸
:=IX

for some constants C5,C6,C7 < ∞. We can apply similar
arguments to VI giving

VI =
∣
∣
∣
∣
∣

(1 − ω(i+1))g(1)

Z (i+1)(r)
− (1 − ω(i))g(1)

Z (i)(r)

∣
∣
∣
∣
∣

≤ C8

∣
∣
∣ω(i+1) − ω(i)

∣
∣
∣

︸ ︷︷ ︸
VII

+C9

∣
∣
∣Z (i+1)(r) − Z (i)(r)

∣
∣
∣

︸ ︷︷ ︸
IX

for some constants C8,C9 < ∞. Starting with IX, by sub-
stituting in the definitions in (29), we have

IX =
∣
∣
∣Z (i+1)(r) − Z (i)(r)

∣
∣
∣

=

∣
∣
∣
∣
∣
∣
∣

⎛

⎜
⎝ω(i+1)g

⎛

⎜
⎝

π(γ (r))

π(γ (r − 1))

(
A(i+1)
Kr

D(i+1)
Kr

)γ d (r)
⎞

⎟
⎠

+(1 − ω(i+1))g(1)

⎞

⎟
⎠

−
⎛

⎜
⎝ω(i)g

⎛

⎜
⎝

π(γ (r))

π(γ (r − 1))

(
A(i)
Kr

D(i)
Kr

)γ d (r)
⎞

⎟
⎠

+(1 − ω(i))g(1)

⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

,

and applying the triangle inequality yields

IX ≤

∣
∣
∣
∣
∣
∣
∣
ω(i+1)g

⎛

⎜
⎝

π(γ (r))

π(γ (r − 1))

(
A(i+1)
Kr

D(i+1)
Kr

)γ d (r)
⎞

⎟
⎠

−ω(i)g

⎛

⎜
⎝

π(γ (r))

π(γ (r − 1))

(
A(i)
Kr

D(i)
Kr

)γ d (r)
⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

+ g(1)

∣
∣
∣
∣ω

(i+1) − ω(i)
∣
∣
∣
∣

≤C10

∣
∣
∣
∣ω

(i+1) − ω(i)
∣
∣
∣
∣

︸ ︷︷ ︸
VII
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+ C11

∣
∣
∣
∣
∣
∣
∣
g

⎛

⎜
⎝

π(γ (r))

π(γ (r − 1))

(
A(i+1)
Kr

D(i+1)
Kr

)γ d (r)
⎞

⎟
⎠ − g

⎛

⎜
⎝

π(γ (r))

π(γ (r − 1))

(
A(i)
Kr

D(i)
Kr

)γ d (r)
⎞

⎟
⎠

∣
∣
∣
∣
∣
∣
∣

︸ ︷︷ ︸
VIII

for some constantsC10,C11 < ∞. The last line follows after
applying Lemma 3.

The diminishing adaptation of tuning parameter ω is
shown in Lemma 5 where

VII ≤ C12i
−λ (B.40)

for some constant C12 < ∞, λ ∈ (1/2, 1) for the
Robins-Monro adaptation scheme and λ = 0.5 for the
Kiefer–Wolfowitz adaptation scheme.

We now consider term VIII. From assumption (A.1), we
have

g(t2) − g(t1) ≤ Cg(t2 − t1)

and therefore

|g(t2) − g(t1)| ≤ Cg|t2 − t1| (B.41)

for any t1, t2 > 0. We then have

VIII ≤ Cg

∣
∣
∣
∣
∣
∣
∣

π(γ (r))

π(γ (r − 1))

(
A(i+1)
Kr

D(i+1)
Kr

)γ d (r)

− π(γ (r))

π(γ (r − 1))

(
A(i)
Kr

D(i)
Kr

)γ d (r)
∣
∣
∣
∣
∣
∣
∣

≤ �Cg

∣
∣
∣
∣
∣
∣
∣

(
A(i+1)
Kr

D(i+1)
Kr

)γ d (r)

−
(
A(i)
Kr

D(i)
Kr

)γ d (r)
∣
∣
∣
∣
∣
∣
∣
,

where the last line follows from Assumption (A.2). Consid-
ering two possible values of γ d(r), namely 1 and −1, we
show that VIII is bounded by the maximum of those values

VIII ≤ �Cg max

{∣
∣
∣
∣
∣

A(i+1)
Kr

D(i+1)
Kr

− A(i)
Kr

D(i)
Kr

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

D(i+1)
Kr

A(i+1)
Kr

− D(i)
Kr

A(i)
Kr

∣
∣
∣
∣
∣

}

.

Next, multiplying the common denominator yields

VIII ≤ �Cg max

{∣
∣
∣
∣
A(i+1)
Kr

D(i)
Kr

− A(i)
Kr

D(i+1)
Kr

D(i+1)
Kr

D(i)
Kr

∣
∣
∣
∣,

∣
∣
∣
∣
D(i+1)

Kr
A(i)
Kr

− D(i)
Kr

A(i+1)
Kr

A(i+1)
Kr

A(i)
Kr

∣
∣
∣
∣

}

≤ �Cg

π2
0

max

{∣
∣
∣
∣A

(i+1)
Kr

D(i)
Kr

− A(i)
Kr

D(i+1)
Kr

∣
∣
∣
∣,

∣
∣
∣
∣D

(i+1)
Kr

A(i)
Kr

− D(i)
Kr

A(i+1)
Kr

∣
∣
∣
∣

}

,

which holds because π0 ≤ A j , Dj ≤ 1 from the proof of
Lemma 1. Then, by applying Lemma 3, we have

VIII ≤ �Cg

π2
0

max

{∣
∣
∣
∣A

(i+1)
Kr

− A(i)
Kr

∣
∣
∣
∣ +

∣
∣
∣
∣D

(i+1)
Kr

− D(i)
Kr

∣
∣
∣
∣,

∣
∣
∣
∣A

(i+1)
Kr

− A(i)
Kr

∣
∣
∣
∣ +

∣
∣
∣
∣D

(i+1)
Kr

− D(i)
Kr

∣
∣
∣
∣

}

≤ �Cg

π2
0

(∣
∣
∣
∣A

(i+1)
Kr

− A(i)
Kr

∣
∣
∣
∣ +

∣
∣
∣
∣D

(i+1)
Kr

− D(i)
Kr

∣
∣
∣
∣

)

≤ C13

(

max
j

{∣
∣
∣
∣A

(i+1)
j − A(i)

j

∣
∣
∣
∣

}

+max
j

{∣
∣
∣
∣D

(i+1)
j − D(i)

j

∣
∣
∣
∣

})

for some constant C13 < ∞.
As we have previously showed that

max
j

{∣
∣
∣
∣A

(i+1)
j − A(i)

j

∣
∣
∣
∣

}

≤ 1

π0
· 2

i + 1
(B.42)

max
j

{∣
∣
∣
∣D

(i+1)
j − D(i)

j

∣
∣
∣
∣

}

≤ 1

π0
· 2

i + 1
, (B.43)

this leads to

VIII ≤ C14
1

π0
· 2

i + 1

≤ C15i
−1

for some constants C14,C15 < ∞.
We complete the proof by stating that IV ≤ C16i−λ for

some constant C16 < ∞, and hence I ≤ C17i−λ for some
constant C17 < ∞, λ ∈ (1/2, 1) for the Robins-Monro
adaptation scheme and λ = 0.5 for the Kiefer–Wolfowitz
adaptation scheme, which shows that the diminishing adap-
tation for the PARNI sampler has established. ��

B.8 Proof of Theorem 2

Proof Simultaneous uniform ergodicity together with dimin-
ishing adaption are enough to show that π is stationary for
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Fig. 7 Simulated data: plots of average squared jumping distance
and average mean square error against average acceptance rate and
ω for the Pointwise implementation of Adaptive Random Neighbour-
hood Informed and Thresholded proposal with Robbins-Monro update
(PARNIT-RM). a–d average acceptance rate against ω for simulated

data-sets with signal-to-noise ratio of 0.5, 1, 2 and 3; e–h average
squared jumping distance against average acceptance rate for simu-
lated data-sets with signal-to-noise ratio of 0.5, 1, 2, 3; i–j average
mean squared error against average acceptance rate for simulated data-
sets with signal-to-noise ratio of 0.5, 1, 2 and 3
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Fig. 8 Simulated data: plots of average squared jumping distance
and average mean square error against average acceptance rate and
ω for the Pointwise implementation of Adaptive Random Neighbour-
hood Informed and Balanced proposal with Robbins-Monro update
(PARNIB-RM). a–d average acceptance rate against ω for simulated

data-sets with signal-to-noise ratio of 0.5, 1, 2 and 3; e–h average
squared jumping distance against average acceptance rate for simu-
lated data-sets with signal-to-noise ratio of 0.5, 1, 2, 3; i–j average
mean squared error against average acceptance rate for simulated data-
sets with signal-to-noise ratio of 0.5, 1, 2 and 3
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Fig. 9 Simulated data: trace plots of ω from the point-wise imple-
mentation of the Adaptive Random Neighbourhood Informed and
Thresholded proposal with Kiefer–Wolfowitz update (PARNIT-KW)
for the first 1500 iterations on simulated data-sets with signal-to-noise

ratio of 0.5 and three choices of initial values (0.25, 0.5 and 0.75). The
black line indicates the optimal values of ω for each data-set. (Color
figure online)

each kernel PPARNI
θ and the adaptive algorithm is ergodic

from Theorem 1 in Roberts and Rosenthal (2007). Its multi-
ple chain version is also ergodic with respect to π⊗L .

The proof of the Strong Law of Large Numbers (SLLN)
contains two steps. Firstly, we show that each individual
chain satsifies a SLLN, that is

1

N

N−1∑

i=0

f (γ l,(i)) → π( f ) almost surely as N → ∞.

(A.44)

Then by averaging over L parallel chains, we can show that
the SLLN in (50) is satisfied for the multiple chain version.

We use Theorem 2.7 in Fort et al. (2011) to show that
(A.44) holds. To do so, three conditions are required.

(Con.1) The measurable function V can be chosen to be the
constant function V ≡ 1, where V -variation dis-
tance norm reduces to the total variation distance. It

is obvious that the below is met if with λθ = 1/2,
bθ = 1, the measure νθ is uniformly distributed on
the sample space �, that is

νθ (γ ) = 1

2p
,

with δθ = b (the lower bound for a single chain in
Lemma 1), then

PPARNI
θ V ≤ 1

2
V + 1

PPARNI
θ (γ, ·) ≥ bνθ (·)I {V ≤ cθ }(γ ),

cθ = 2bθ (1 − λθ )
−1 − 1 = 3

is satisfied.
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Fig. 10 Simulated data: trace plots ofω from the point-wise implemen-
tation of the Adaptive RandomNeighbourhood Informed and Balanced
proposal with Kiefer–Wolfowitz update (PARNIB-KW) for the first
1500 iterations on simulated data-sets with signal-to-noise ratio of 0.5

and three choices of initial values (0.25, 0.5 and 0.75). The black line
indicates the optimal values ofω for each data-set. (Color figure online)

(Con.2) Using the same parameters specified in (Con.1), the
problem is reduced to

∞∑

i=1

i−1 sup
γ∈�

‖PPARNI
θ(i+1) (γ, ·) − PPARNI

θ(i) (γ, ·)‖ < +∞.

This is satisfied since the PARNI sampler satisfies
diminishing adaption by Lemma 2.

(Con.3) Condition A5 in Fort et al. Fort et al. (2011) is triv-
ially satisfiedwith the parameters chosen in (Con.1).

We have established (Con.1), (Con.2), and (Con.3), therefore
by Corollary 2.8 in Fort et al. (2011), (A.44) holds, and so
does (50). ��

C Additional numerical results

This section will provide more numerical results in addition
to Sect. 5.

C.1 Sensitivity analysis on thinning parameter! for
simulated data-sets

We repeat the experiment which studies the optimal value of
ω and optimal average acceptance rate in Sect. 5.2 on sim-
ulated data-sets used in Sect. 5.1. Figures 7 and 8 show the
effect of manipulating the target average acceptance rate on
average squared jumping distance and average mean squared
errors for the PARNIT and PARNIB proposals respectively.
We split the plots into 4 sets where each set of graphs cor-
responds to a level of signal-to-noise ratio. In both figures,
panels (a)–(d) show the negative relationship of ω against
average acceptance rate. Panels (e)–(h) plot the average
squared jumping distance against the average acceptance
rate. Finally, panels (i)–(l) show the average acceptance rate
and the average mean squared errors. These plots suggest the
similar conclusion in Sect. 5.2 for which the average accep-
tance rate of 0.65 yields the largest average squared jumping
distance. The smallest average mean squared errors are also
located around the region of 0.65 average acceptance rate.
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Fig. 11 Simulated data: trace plots of ω from the point-wise imple-
mentation of the Adaptive Random Neighbourhood and Thresholded
Informed proposal with Kiefer–Wolfowitz update (PARNIT-KW) for
the first 1500 iterations on simulated data-sets with signal-to-noise ratio

of 1 and three choices of initial values (0.25, 0.5 and 0.75). The black
line indicates the optimal values of ω for each data-set. (Color figure
online)

C.2 Additional results from Kiefer–Wolfowitz
adaptation scheme

This section is to examine whether applying the Kiefer–
Wolfowitz adaptation scheme to the PARNI sampler would
lead to the optimal scaling property of the chains. We ran the
PARNIT-KWand PARNIB-KWsamplers for 1500 iterations
with 3 different initial values on the 24 simulated data-sets
of Sect. 5.1 and the 8 real data-sets of Sect. 5.2 and recorded
the values of ω. The trace plots of these ω values are given
in Figs. 9, 10, 11, 12, 13, 14, 15 , and 16, for the simulated
data-sets and Figs. 17 and 18 for the real data-sets. The black
horizontal lines in these plots indicate the empirical optimal
values of ω gathered for each data-set from Figs. 3, 4, 7 and
8. The optimal values decrease along with the dimension-
ality of p and they are also influenced by the correlation
structure for which more complicated correlation structures
imply smaller values of ω. It appears that the values of ω

are moving towards the black lines and converging to them
regardless of initial values.

There is a significant trend that theω values are approach-
ing the region around the optimal values fairly quickly.
Surprisingly, the parameter ω converges even faster in high-
dimensional problems, for example, when p = 50, 000 in
simulated data-sets and the SNP data-set. But there is still a
rare chance that the Kiefer–Wolfowitz scheme does not lead
to the optimal choice. Some of ω values become trapped on
the value of 1. This issue is mainly caused by two reasons.
Firstly, the ASJD estimators are often too noisy to capture
the true signal in the expected squared jumping distances.
These estimators can be viewed as simple Monte Carlo with
only a few samples and therefore we may obtain estimates
with extremely large estimation errors. Large errors introduce
uncertainty into the true direction that should be updated and
make ω take longer to converge or converge to a suboptimal
value. Secondly, the use of the logistic transformation makes
ω difficult to be updated in the boundary areas and therefore
ω easily get trapped in values of 0 or 1.

Overall, the Kiefer–Wolfowitz adaptation scheme is rel-
atively robust in tuning ω for the PARNI sampler, and we
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Fig. 12 Simulated data: trace plots ofω from the point-wise implemen-
tation of the Adaptive RandomNeighbourhood Informed and Balanced
proposal with Kiefer–Wolfowitz update (PARNIB-KW) for the first
1500 iterations on simulated data-sets with signal-to-noise ratio of 1

and three choices of initial values (0.25, 0.5 and 0.75). The black line
indicates the optimal values ofω for each data-set. (Color figure online)

believe it can also be applied to other adaptive MCMC
schemes in tuning the scaling parameters.

C.3 More results from simulated data-sets

In addition to Figs. 2, 19, 20 and 21 are trace plots of log pos-
terior model probabilities from the ADS, ASI, PARNIT-RM,
PARNIT-KW, PARNIB-RM and PARNIB-KW schemes on
the simulated data-sets of Sect. 5.1 when SNR = 0.5, 1 and
3. Generally speaking, all the PARNI algorithms mix bet-
ter than the ADS and ASI schemes on all data-sets. Except
for the data-sets for which the posterior distributions do not
concentrate in a few models (when SNR = 0.5), the ADS
scheme always get struck on the empty model and struggles

to include important variables and reach the high probabil-
ity region within the first 1500 iterations. The ASI algorithm
mixes quite well when p is relative small, but this algorithm
is taking longer to converge and it is inefficient to jump
between different models when p reaches 50, 000. On the
other hand, the PARNIT-RM, PARNIT-KW, PARNIB-RM
and PARNIB-KW samplers only take dozens of iterations
to converge properly in all settings. In conclusion, the plots
suggest that all the PARNI schemes outperform ADS and
ASI in terms of the mixing time and convergence rate on
the simulated data-sets. They always propose models with
high probability of being accepted and therefore sufficiently
explore the sample space.
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Fig. 13 Simulated data: trace plots of ω from the point-wise imple-
mentation of the Adaptive Random Neighbourhood Informed and
Thresholded proposal with Kiefer–Wolfowitz update (PARNIT-KW)
for the first 1500 iterations on simulated data-sets with signal-to-noise

ratio of 2 and three choices of initial values (0.25, 0.5 and 0.75). The
black line indicates the optimal values of ω for each data-set. (Color
figure online)
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Fig. 14 Simulated data: trace plots ofω from the point-wise implemen-
tation of the Adaptive RandomNeighbourhood Informed and Balanced
proposal with Kiefer–Wolfowitz update (PARNIB-KW) for the first
1500 iterations on simulated data-sets with signal-to-noise ratio of 2

and three choices of initial values (0.25, 0.5 and 0.75). The black line
indicates the optimal values ofω for each data-set. (Color figure online)
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Fig. 15 Simulated data: trace plots of ω from the point-wise imple-
mentation of the Adaptive Random Neighbourhood Informed and
Thresholded proposal with Kiefer–Wolfowitz update (PARNIT-KW)
for the first 1500 iterations on simulated data-sets with signal-to-noise

ratio of 3 and three choices of initial values (0.25, 0.5 and 0.75). The
black line indicates the optimal values of ω for each data-set. (Color
figure online)
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Fig. 16 Simulated data: trace plots ofω from the point-wise implemen-
tation of the Adaptive RandomNeighbourhood Informed and Balanced
proposal with Kiefer–Wolfowitz update (PARNIB-KW) for the first
1500 iterations on simulated data-sets with signal-to-noise ratio of 3

and three choices of initial values (0.25, 0.5 and 0.75). The black line
indicates the optimal values ofω for each data-set. (Color figure online)
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Fig. 17 Real data: trace plots of ω from the point-wise implementation
of the Adaptive Random Neighbourhood Informed and Thresholded
proposal with Kiefer–Wolfowitz update (PARNIT-KW) for the first

1500 iterations on real data-sets with three choices of initial values
(0.25, 0.5 and 0.75). The black line indicates the optimal values of ω

for each data-set. (Color figure online)
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Fig. 18 Real data: trace plots of ω from the point-wise implementation
of the Adaptive Random Neighbourhood Informed and Balanced pro-
posal with Kiefer–Wolfowitz (PARNIB-KW) update for the first 1500

iterations on real data-sets with three choices of initial values (0.25, 0.5
and 0.75). The black line indicates the optimal values of ω for each
data-set. (Color figure online)
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Fig. 19 Simulated data: trace plots of log posterior model probability
from the Add-Delete-Swap (ADS), Adaptively Scaled Individual (ASI)
adaptation, Pointwise implementation of Adaptive Random Neigh-
bourhood Informed and Thresholded proposal with Kiefer–Wolfowitz
update (PARNIT-KW), Pointwise implementation of Adaptive Random
Neighbourhood Informed and Thresholded proposal with Robbins-

Monro update (PARNIT-RM), Pointwise implementation of Adaptive
Random Neighbourhood Informed and balanced proposal with Kiefer–
Wolfowitz update (PARNIB-KW) and Pointwise implementation of
Adaptive Random Neighbourhood Informed and balanced proposal
with Robbins-Monro update (PARNIB-RM) samplers for the first 1500
iterations on simulated data-sets with signal-to-noise ratio of 0.5
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Fig. 20 Simulated data: trace plots of log posterior model probability
from the Add-Delete-Swap (ADS), Adaptively Scaled Individual (ASI)
adaptation, Pointwise implementation of Adaptive Random Neigh-
bourhood Informed and Thresholded proposal with Kiefer–Wolfowitz
update (PARNIT-KW), Pointwise implementation of Adaptive Random
Neighbourhood Informed and Thresholded proposal with Robbins-

Monro update (PARNIT-RM), Pointwise implementation of Adaptive
Random Neighbourhood Informed and balanced proposal with Kiefer–
Wolfowitz update (PARNIB-KW) and Pointwise implementation of
Adaptive Random Neighbourhood Informed and balanced proposal
with Robbins-Monro update (PARNIB-RM) samplers for the first 1500
iterations on simulated data-sets with signal-to-noise ratio of 1
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Fig. 21 Simulated data: trace plots of log posterior model probability
from the Add-Delete-Swap (ADS), Adaptively Scaled Individual (ASI)
adaptation, Pointwise implementation of Adaptive Random Neigh-
bourhood Informed and Thresholded proposal with Kiefer–Wolfowitz
update (PARNIT-KW), Pointwise implementation of Adaptive Random
Neighbourhood Informed and Thresholded proposal with Robbins-

Monro update (PARNIT-RM), Pointwise implementation of Adaptive
Random Neighbourhood Informed and balanced proposal with Kiefer–
Wolfowitz update (PARNIB-KW) and Pointwise implementation of
Adaptive Random Neighbourhood Informed and balanced proposal
with Robbins-Monro update (PARNIB-RM) samplers for the first 1500
iterations on simulated data-sets with signal-to-noise ratio of 3
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