2,056 research outputs found

    A Novel Millimeter-Wave Channel Simulator and Applications for 5G Wireless Communications

    Full text link
    This paper presents details and applications of a novel channel simulation software named NYUSIM, which can be used to generate realistic temporal and spatial channel responses to support realistic physical- and link-layer simulations and design for fifth-generation (5G) cellular communications. NYUSIM is built upon the statistical spatial channel model for broadband millimeter-wave (mmWave) wireless communication systems developed by researchers at New York University (NYU). The simulator is applicable for a wide range of carrier frequencies (500 MHz to 100 GHz), radio frequency (RF) bandwidths (0 to 800 MHz), antenna beamwidths (7 to 360 degrees for azimuth and 7 to 45 degrees for elevation), and operating scenarios (urban microcell, urban macrocell, and rural macrocell), and also incorporates multiple-input multiple-output (MIMO) antenna arrays at the transmitter and receiver. This paper also provides examples to demonstrate how to use NYUSIM for analyzing MIMO channel conditions and spectral efficiencies, which show that NYUSIM is an alternative and more realistic channel model compared to the 3rd Generation Partnership Project (3GPP) and other channel models for mmWave bands.Comment: 7 pages, 8 figures, in 2017 IEEE International Conference on Communications (ICC), Paris, May 201

    Joint Modeling of Received Power, Mean Delay, and Delay Spread for Wideband Radio Channels

    Get PDF
    We propose a multivariate log-normal distribution to jointly model received power, mean delay, and root mean square (rms) delay spread of wideband radio channels, referred to as the standardized temporal moments. The model is validated using experimental data collected from five different measurement campaigns (four indoor and one outdoor scenario). We observe that the received power, mean delay and rms delay spread are correlated random variables and, therefore, should be simulated jointly. Joint models are able to capture the structure of the underlying process, unlike the independent models considered in the literature. The proposed model of the multivariate log-normal distribution is found to be a good fit for a large number of wideband data-sets

    Fade depth scaling with channel bandwidth

    Get PDF
    The dependence of small-scale fading on bandwidth is quantified experimentally in the 3.1–10.6 GHz band for indoor channels. The fade depth converges to 4 dB at 1 GHz bandwidth, with little reduction for further increase in bandwidth. A simple yet accurate empirical fade depth model is developed, enabling convenient evaluation of the link budget for a channel with given bandwidth

    An Empirical Ultra Wideband Channel Model for Indoor Laboratory Environments

    Get PDF
    Channel measurement and modeling is an important issue when designing ultra wideband (UWB) communication systems. In this paper, the results of some UWB time-domain propagation measurements performed in modern laboratory (Lab) environments are presented. The Labs are equipped with many electronic and measurement devices which make them different from other indoor locations like office and residential environments. The measurements have been performed for both line of sight (LOS) and non-LOS (NLOS) scenarios. The measurement results are used to investigate large-scale channel characteristics and temporal dispersion parameters. The clustering Saleh- Valenzuela (S-V) channel impulse response (CIR) parameters are investigated based on the measurement data. The small-scale amplitude fading statistics are also studied in the environment. Then, an empirical model is presented for UWB signal transmission in the Lab environment based on the obtained results

    A statistical ultra wideband indoor channel model and the effects of antenna directivity on multipath delay spread and path loss in ultra wideband indoor channels

    Get PDF
    Ultra-wideband (UWB) indoor frequency domain channel measurements have been performed in the 2 GHz to 6 GHz frequency band using three different transmitter/receiver (Tx/Rx) antenna combination pairs. The effects of antenna directivity on path loss and multipath propagation in the channel were analyzed extensively for various omni-directional and directional antenna combinations. A statistical model of the path loss in the channel is presented, where the parameters in the model (i.e., path loss exponent and shadow fading statistics) are dependent on the particular Tx/Rx antenna combination. Time domain statistics of the channel (i.e., mean delay spread and RMS delay spread) are analyzed thoroughly for each antenna combination. Results show that RMS delay spread increases over distance for all three antenna combinations, but at a greater rate when directional antennas are used in the channel. There is a significant reduction in RMS delay spread when directional antennas are used at the transmitter and receiver or solely at the receiver with respect to an omni-directional/omni-directional antenna pair. Results show that directional antennas can be used as an effective way of mitigating the effects of multipath propagation in UWB indoor channels. A distance dependent statistical impulse response model of the channel is also presented, which statistically reproduces the impulse response of the channel with high fidelity

    Millimeter wave and UWB propagation for high throughput indoor communications

    Get PDF
    Millimeter-wave systems at 60 GHz and ultra-wideband (UWB) systems in the microwave range of 3-10 GHz have been received with great interest for their high data rate wireless communications. In design, test and optimization of future wireless systems, channel models featuring the relevant characteristics of radiowave propagation are required. Furthermore, detailed understanding of the propagation channel and its interaction with system, creates insights into possible solutions. In this work, both theoretical (ray-tracing) and statistical models of the 60 GHz and UWB channels are studied. Propagation characteristics of the 60 GHz and UWB indoor channels are also compared for providing useful information on design of radio systems. More specifically, based on real-time channel sounder measurements performed in the 60 GHz band, propagation mechanisms including person blocking effect are concluded. Ray-based models in LOS and NLOS indoor corridors are proposed. Multipath power distributions in the 60 GHz band are studied first time. Moreover, propagation interdependencies of path loss, shadowing, number of paths, Rice K-factor and cross polarization discrimination (XPD) with channel delay spread are established. In the UWB propagation channel, frequency- and bandwidth- dependencies are investigated. Multipath and clustering propagation characteristics are analyzed. A new cluster model is proposed and compared with the classical Saleh-Valenzuela model for gaining more understanding of channel general properties. Finally, the performance and capacities of the 60 GHz UWB and MIMO (multiple-in and multiple-out) systems are analyzed for providing reliable parameters for system design and useful information for standardization groups
    • 

    corecore