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Joint Modeling of Received Power, Mean Delay,
and Delay Spread for Wideband Radio Channels

Ayush Bharti, Ramoni Adeogun, Xuesong Cai, Wei Fan, François-Xavier Briol, Laurent Clavier, Troels Pedersen

Abstract—We propose a multivariate log-normal distribution
to jointly model received power, mean delay, and root mean
square (rms) delay spread of wideband radio channels, referred
to as the standardized temporal moments. The model is validated
using experimental data collected from five different measure-
ment campaigns (four indoor and one outdoor scenario). We
observe that the received power, mean delay and rms delay
spread are correlated random variables and, therefore, should be
simulated jointly. Joint models are able to capture the structure of
the underlying process, unlike the independent models considered
in the literature. The proposed model of the multivariate log-
normal distribution is found to be a good fit for a large number
of wideband data-sets.

Index Terms—temporal moments, mean delay, rms delay
spread, multivariate log-normal, mm-wave, wideband radio chan-
nels

I. INTRODUCTION

Standardized temporal moments such as received power,
mean delay, and root mean square (rms) delay spread are
widely used to summarize power-delay profiles (PDPs) of
wideband radio channels. Characterization of these temporal
moments is imperative for understanding the effects of multi-
path propagation on the received signal [1], and hence, for
the design and analysis of communication and localization
systems. The standardized temporal moments are derived
from transformations of the raw temporal moments of the
instantaneous power of the received signal. Therefore, the raw
moments, and consequently the standardized moments, are
dependent random variables. The raw temporal moments have
recently been used to estimate parameters of stochastic radio
channel models from measurements [2]–[7]. Mean delay and
rms delay spread have also been used to fit an extension of the
WINNER II model to measurements [8]. In such applications,
where more than one temporal moment is used simultaneously,
insight into their dependency structure can be valuable.

Independent modeling of received power, mean delay, and
rms delay spread is prevalent in the literature, with their em-
pirical averages and cumulative distributions functions (CDFs)
being reported frequently while disregarding their dependen-
cies. A survey of the empirical data available for the delay
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Fig. 1. Scatter plot of received power and rms delay spread obtained
from AAU-Hall measurements (see Sec. IV-D) is shown in black (above).
The contour lines from independently fitting log-normal distribution to the
measurements is shown in red. The empirical CDFs of the marginals is also
shown with the fitted log-normal CDF in red (below).

properties of indoor radio channel is given in [9], where
a variety of marginal models is fit to the mean delay and
rms delay spread from the various data-sets. They obtained
log-normal, Gaussian, and Weibull as the best fit models.
Empirical distribution of delay spread has been modeled using
a log-normal distribution in the 910 MHz channel [10], [11]
and the 30 MHz to 400 MHz frequency band [12]. A Gaussian
distribution for the rms delay spread has also been proposed
based on empirical data in [13].

The shortcomings of independent modeling become clear by
considering jointly the received power and rms delay spread
as done in the example in Fig. 1. It is apparent that by fitting
independent log-normal models to the received power and
rms delay spread, the marginals of the data may are modeled
correctly. However, the correlation information in the data
is lost on modeling them independently. One approach to
mitigate this problem is to model the standardized moments
jointly. An exception to the independent models is the one
proposed by Greenstein et al. [11] where they accounted
for the correlation between rms delay spread and shadow
fading after analysing a wide range of outdoor measurements,
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mostly in the 900 MHz frequency band. They argued that rms
delay spread is log-normally distributed at a given propagation
distance, and proposed a joint log-normal model for path
gain1 and delay spread with a correlation coefficient of –0.75.
However, they did not take mean delay into account. Moreover,
the correlation coefficient was based on qualitative analysis of
scatter plots and on a single measurement setting. The mutual
relations between the means of the raw temporal moments
have been modeled in [14]–[16] for the in-room case, while
their joint distribution was not studied. To the best of our
knowledge, joint characterization of the temporal moments
in the millimetre-wave (mm-wave) band has not been done
before.

Potentially, the temporal moments could be modeled jointly
using a multivariate distribution such that the model could be
fitted to new measurements. Joint modeling of multivariate
random variables is considerably more involved than modeling
of scalar random variables because the model is required
to represent the marginals and the dependency structure in
the data at the same time. Only a few univariate probability
distribution functions (pdfs) exist that have unique multivariate
extensions, such as the multivariate Gaussian, log-normal,
and Gamma distributions [17]. Copulas [18] can also be
used to model the dependency structure between the random
variables, especially when the marginal distributions lead to
a multivariate distribution that is difficult to handle due to
the lack of analytical expression or difficulties to estimate the
parameters.

After considering several of these methods, we conclude
that the multivariate log-normal is a reasonable choice which
provides a good balance between goodness-of-fit and ease of
interpretation. Moreover, there is substantial support for log-
normality of standardized temporal moments in the literature.
In this paper, we propose and validate the multivariate log-
normal model using a wide variety of measurements taken
in different scenarios and frequency ranges. Measurement
campaigns conducted in Lund University [19], University of
Lille [20], and Aalborg University (AAU) [21] are included
in the study. We also present mm-wave measurements from
one indoor and one outdoor campaign in the 28 GHz to 30
GHz band conducted recently at AAU. We compare the pro-
posed model with the multivariate Gaussian and independent
marginal models in terms of the Akaike Information Criterion
(AIC). Finally, we investigate the model fits to the raw
and standardized temporal moments from the measurements.
Preliminary results have been published in the conference
publication [22].

The paper is organized as follows: Section II describes
the raw and standardized temporal moments, and Section III
presents the model. In Section IV we compare the proposed
model with other modeling choices. Section V and VI compare
the model fits to the raw and standardized temporal moments
of the measurements, respectively. Finally, the conclusions are
outlined in Section VII.

1Greenstein et al. [11] defined path gain as the ratio of received power to
transmitted power.

II. TEMPORAL MOMENTS

Consider a measurement campaign where the channel trans-
fer function between fixed transmit and receive antennas
is recorded using a vector network analyzer (VNA). Sam-
pling the transfer function, H(f), at Ns frequency points
in the measurement bandwidth B results in a separation of
∆f = B/(Ns − 1) between the points. We assume that
the measurement noise at the nth frequency point, Wn, is
additive and independent of the transfer function, Hn. Then,
the measured frequency-domain signal, Yn, reads

Yn = Hn +Wn, n = 0, 1, . . . , (Ns − 1). (1)

Discrete-frequency, continuous-time inverse Fourier transform
gives the 1/∆f -periodic measured time-domain signal

y(t) =
1

Ns

Ns−1∑
n=0

Yn exp(j2πn∆ft). (2)

Note that y(t) is often referred to as the impulse response
despite suffering from limited bandwidth and noise. This
terminology is somewhat misleading since strictly speaking
the impulse response is the inverse Fourier transform of H(f).
For large bandwidth and high signal-to-noise ratio (SNR), y(t)
can be used as an approximation to the impulse response in
the time interval [0, 1/∆f ], provided that the impulse response
decays rapidly enough. To avoid this confusion, we refer to
the measured signal as y(t).

The raw temporal moments are summary statistics of the
measured signal y(t), where the kth temporal moment is
defined as

mk =

∫ 1
∆f

0

tk|y(t)|2dt, k = 0, 1, . . . , (K − 1). (3)

Here, a total of K raw temporal moments are computed
“instantaneously” per realization of y(t), giving the K-
dimensional vector m = [m0,m1, . . . ,mK−1]

>. Sum-
marizing Nreal channel realizations into K temporal mo-
ments therefore results in the K × Nreal dimensional matrix,
M =

[
m(1), . . . ,m(Nreal)

]
. The raw temporal moments are

correlated random variables as they are all derived from the
received signal power, |y(t)|2. The SI unit for the kth temporal
moment is [second]k.

The standardized temporal moments are obtained from the
first three raw temporal moments. The received power, P0, the
mean delay, τ̄ , and the rms delay spread, τrms, are given as

P0 = m0, τ̄ =
m1

m0
, and τrms =

√
m2

m0
−
(
m1

m0

)2

.

(4)
The unit of τ̄ and τrms is in seconds whereas P0 is unitless.
The deterministic relationship between the raw and standard-
ized temporal moments is depicted in Fig. 2. The non-linearity
of the above transformations and the dependency of the raw
temporal moments complicates the joint characterization of
mean delay and rms delay spread. We will focus our discussion
on the first three temporal moments, (m0,m1,m2), as they
suffice for the received power, mean delay, and rms delay
spread but the framework could easily be extended to more
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Fig. 2. The connections between the magnitude square received signal and
the summary statistics (raw- and standardized temporal moments).

moments as long as the marginal distributions fit the same
distribution.

Note that the standardized temporal moments in (4) are
computed from the measured signal, y(t), rather than the
channel impulse response. The impulse response is unob-
servable due to the noise and bandwidth limitations. It is
widespread practice to employ a thresholding procedure to
reduce the effect of the measurement noise on the estimation
of temporal moments. However, such procedures require the
setting of a threshold or dynamic range. The choice of the
threshold affects the resulting estimates in a manner that makes
comparison between measurements obtained with different
equipment difficult. For this reason, we omit any thresholding
procedure in the present work.

The finite measurement bandwidth also manifests itself in
the rms delay spread as an approximately additive term equal
to the delay spread of the transmitted signal. This effect can
thus partially be removed by subtracting the delay spread
of the frequency window. This is widespread practice in the
literature and results in a good approximation if the bandwidth
is large and the SNR is high. However, in case of low SNR
and small signal bandwidth, this can lead to inaccurate and
sometimes negative estimates of the delay spread. For the
measurements considered in Section IV, where the bandwidth
is very large, the effect of the transmitted signal can be
ignored. Hence, we make no attempt to compensate for the
effect of a finite measurement bandwidth.

III. PROPOSED STATISTICAL MODEL

We intend to jointly model the first three raw temporal
moments, (m0,m1,m2), and use the transformation in (4) to
simulate the mean delay and rms delay spread. In principle,
the standardized temporal moments could be modeled instead
of the raw moments. However, the distribution on the raw
moments implies a distribution on the standardized moments
from which sampling is straightforward. Modeling the raw
moments has the added advantage that their means and covari-
ances are easier to compute analytically for a given channel
model than those of the standardized moments due to the non-
linear transformation.

We model the vector m = [m0,m1,m2]> as a multivariate
log-normal variable. The exponential of a random vector

following a multivariate Gaussian distribution is multivariate
log-normal distributed. Let x be a K-variate normal random
vector with mean µ and covariance matrix Σ. Then its entry-
wise exponentiation, m = exp(x), yields a log-normal vector
with pdf

f(m;µ,Σ) =

∏K−1
k=0 (mk)−1√
(2π)K det Σ

× exp

(
−1

2
(ln(m)− µ)>Σ−1(ln(m)− µ)

)
. (5)

Here the logarithm is taken entry-wise. By property of the
marginals of the multivariate Gaussian, it is easy to see
that this transform results in a distribution with log-normal
marginals. Note that the parameters of a multivariate log-
normal are the mean vector and the covariance matrix of
the associated multivariate Gaussian distribution. The en-
tries of µ and Σ are given as µk = E [lnmk] and
Σkk′ = cov (lnmk, lnmk′), for k, k′ = 0, 1, . . . ,K−1, re-
spectively. Given that raw temporal moments are log-normally
distributed, their means and covariances can be related to µ
and Σ as

E [mk] = exp

(
µk +

1

2
Σkk

)
, and (6)

cov (mk,mk′) = exp

(
µk + µk′ +

1

2
(Σkk + Σk′k′)

)
× (exp (Σkk′)− 1) . (7)

Note that we model the raw temporal moments as opposed
to Greenstein et al. [11] who model shadow fading and rms
delay spread as jointly log-normal. With the proposed model,
log-normality is preserved for the received power and mean
delay due to the multiplicative transform applied on m0 and
m1. The distribution of rms delay spread, however, is unknown
due to the subtraction in the transformation, see (4).

A. Estimation of parameters

The parameters of the proposed model need to be estimated
from measured data in order to use the model for simulation
purposes. Here, we refer to the matrix of raw temporal
moments, M, as the data. This data matrix is obtained by sum-
marizing Nreal realizations of the channel impulse response
measurements using (3). Assuming independent and identi-
cally distributed realizations, maximum likelihood estimation
of µ and Σ is achieved by solving the optimization problem,

(µ̂, Σ̂) = argmax
µ,Σ

Nreal∏
i=1

f
(
m(i);µ,Σ

)
. (8)

Since µ and Σ are the mean vector and covariance matrix, re-
spectively, of the associated multivariate Gaussian distribution,
their maximum likelihood estimates, µ̂, and Σ̂, are

µ̂ =
1

Nreal

Nreal∑
i=1

ln m(i), and (9)

Σ̂ =
1

Nreal

Nreal∑
i=1

(
ln m(i) − µ̂

)(
ln m(i) − µ̂

)>
. (10)
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TABLE I
SUMMARY OF DIFFERENT MEASUREMENT DATA-SETS.

Bandwidth
(GHz)

No. of
samples

No. of
realizations

Antenna
Tx/Rx

Dimensions
(m3) Scenario Environment

Lund Data [19] 58-62 801 625 Biconical/Open waveguide 3× 4× 3 NLOS Small room
Lille Data [20] 59-61 1601 750 Microstrip/Microstrip 5.20× 7.15× 2.90 LOS Large room

AAU-Industry [21] 3-8 5001 95 Biconical/Biconical 33× 14× 6 Both Industry hall
AAU-Hall 28-30 1500 720 Biconical/Biconical 44× 25× 10 NLOS Large hall

AAU-Outdoor 28-30 2000 360 Horn/Biconical — LOS Outdoor

B. Simulation from the model

Given a particular value of µ and Σ, simulation from the
proposed model is straightforward. To generate one sample of
m, or subsequently, one sample of (P0, τ̄ , τrms), the following
steps should be performed:

1) Draw x ∼ N (µ,Σ)
2) Compute entry-wise exponential, m = exp(x)
3) Compute τ̄ and τrms from (4)

IV. MEASUREMENT DATA DESCRIPTION

We now describe the different radio channel measurements
used to validate the proposed model. An overview of the
measurement data-sets is given in Tab. I.

A. Data-set from Lund University

Polarimetric radio channel measurements at 60 GHz was
recorded in a small meeting room of dimensions 3×4×3 m3

using a VNA. The room consisted of a table, white-board,
bookshelves, and a window on one of the walls. The re-
ceive antenna was placed at one corner of the room and
the transmit antenna was placed on the table. A water-filled
human phantom was used to block the line-of-sight (LOS)
path to emulate non-line-of-sight (NLOS) scenario. A 5 × 5
virtual array of dual-polarized antennas was used with an
inter-element spacing of 5 mm at both the transmitter and
the receiver. This resulted in a 25× 25 dual-polarized MIMO
system, however, in this paper, we only use the vertical-
vertical polarized channels. Measurements were performed in
the bandwidth range of 58 GHz to 62 GHz using 801 equally
spaced frequency points.

B. Data-set from Lille University

Measurements were taken in a computer laboratory of floor
area 7.15 × 5.2 m2 at 26 sites, covering the whole room.
The 60 GHz channel sounder developed in IEMN [20] used
two heterodyne emission and reception heads developed by
monolithic integration with frequencies ranging from 57 GHz
to 59 GHz and with intermediate frequencies of 1 GHz to
3 GHz. A dedicated network analyzer allows, after calibration,
the vectored measure of the frequency transfer function by
steps of 1.25 MHz. The resulting impulse response has a
delay resolution of 0.5 ns and a maximum measurable delay of
800 ns. In this paper, we select a subset of the entire data-set,
specifically, taking the measurements from the first three sites
having the same distance between the transmit and receive
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Fig. 3. The layout of the indoor hall measurement campaign conducted
at Aalborg University. The measurements corresponding to the 1st transmit
antenna array position are presented in this paper.

antennas. Each site consists of 250 positions separated by
2 mm. The transmitter was fixed in a corner, close to the
roof, pointed towards the opposite corner. The receiver was
oriented towards the transmitter in the horizontal plane but
not in the vertical one. Horizontal linear polarization patch
antennas were employed.

C. AAU Data, Industry Scenario

Short-range ultra-wideband measurement campaigns were
conducted in a 33 × 14 × 6 m3 industrial factory hall at
the Smart Production Lab, AAU. The factory hall was a
typical high clutter density environment with large metallic
machinery such as welding machines, hydraulic press, and
material processing machines. Measurements were collected
over the frequency range 3 GHz to 8 GHz using a Rhode &
Schwarz ZND 8.5 GHz VNA and omni-directional broadband
bi-conical antennas at both the transmitter and receiver. During
the measurements, the transmitter was placed at a fixed loca-
tion and the receiver location was varied to obtain horizontal
distances between 1 m and 9 m. A total of 95 channel transfer
functions were obtained with a frequency resolution of 1 MHz
corresponding to 5000 samples over the 5 GHz bandwidth.
Detailed description of the measurements can be found in [21].

D. AAU Data, Hall Scenario

Measurements were taken in a large hall scenario as il-
lustrated in Fig. 3. The hall had a floor area of 44 × 25 m2

and contained tables, metallic pillars, concrete pillars, stairs,
etc. The height of the hall was approximately 10 m. The
measurements were taken with the VNA-based ultra-wideband



5

1
5

10

15

Tx UCAs

Rx

Fig. 4. Outdoor environment for the outdoor measurement campaign con-
ducted at Aalborg University. Measurements from transmit antenna location
number 7 are presented in this paper.

radio-over-fiber channel sounder developed in AAU [23].
Quasi-omnidirectional biconical antennas [24] were used. The
receive antenna was fixed with a height of 1 m to the ground
while transmit antenna was installed on a rotator and rotated
with 720 uniform steps on a circle with a radius of 0.54 m.
In each step, the channel transfer function from 28 GHz
to 30 GHz was swept with 1500 samples in the frequency
domain. In this paper we analyse the first of the 19 different
locations recorded. For this location the transmitter-receiver
distance was around 15 m.

E. AAU Data, Outdoor Scenario

Outdoor measurements were conducted in an open area to
in-between the two buildings as shown in Fig. 4. The same
channel sounder is used as in the indoor hall scenario. In
this case, the transmitter antenna was rotated with a radius
of 0.25 m in 360 uniform steps. In each step, the channel
transfer function from 28 GHz to 30 GHz was swept with
2000 samples. The receive antenna was fixed on a roof edge
with a height of around 20 m. To increase the SNR, the receive
antenna was replaced by a horn antenna with half-power-
beamwidths around 30◦ in both azimuth and elevation. More-
over, its main beam was down tilted to appropriately cover the
transmit antenna. Data was collected from 15 transmit transmit
antenna locations as indicated in Fig. 4. The data presented in
this paper is from the 7th location.

V. MODEL COMPARISON

To characterize the raw temporal moments jointly, their
marginal distributions as well as their correlation structure
needs to be well represented. We compare the proposed model
against competing model choices for the available data-sets.

A. Joint Model Comparison using AIC

We compare the proposed joint model with the model of
a multivariate Gaussian distribution. We also include three
independent models for the raw temporal moments based
on log-normal, Gaussian, and Gamma distributions. We omit
comparison with the multivariate Gamma distributions in [17]
as they did not give useful results when fitted to the raw

temporal moments. Model comparison is done by computing
the Akaike Information Criterion (AIC) value [25] of the com-
peting models. AIC is a common tool for model selection that
estimates the quality of different models relative to each other.
For a model having κ independently adjusted parameters, the
AIC is computed as

AIC = −2L+ 2κ, (11)

where L is the maximized log-likelihood of the data. Given
a set of models fitted by maximum likelihood to the same
data, the preferred model is the one with the lowest AIC
value. We also considered the Bayesian Information Criterion
(BIC), which penalises more than AIC for a large number
of parameters [26]. However, the ordering of the models was
found to be the same for both the criteria, and therefore we
exclude reporting the BIC values here.

The models are fitted to the five aforementioned data-sets by
maximizing their likelihood. The parameter estimates obtained
for the proposed model are reported in Tab. III. The AIC values
of the joint fit of the raw temporal moments are reported in
Tab. II, with κ = 9 for the multivariate distributions, and κ = 6
for the independent marginal models. The proposed model
comes out as the better choice for the joint fit for three out of
five data-sets, with the multivariate Gaussian performing better
for Lille Data and AAU-Outdoor. However, the AIC values for
both the joint models are close to each other. It is evident
that modeling the random variables independently leads to
a significantly poorer fit than either of the joint models, no
matter which distribution is chosen. We remark that using
more complicated models such as copulas [18] to model the
dependency structure may lead to a better fit, but could be
harder to interpret.

B. Log-normal vs. Gaussian Marginals

We now compare the marginal fits of the multivariate
log-normal and Gaussian distributions for modeling the raw
temporal moments using a quantile-quantile (Q-Q) plot. The
quantiles of the data are plotted against the theoretical quan-
tiles of both the log-normal and the Gaussian distributions
after fitting these distributions using maximum likelihood. The
points will approximately lie on a straight line if the data is
well-modeled by the chosen distribution. We show the Q-Q
plots for two of the five data-sets, namely the Lille and the
AAU-Outdoor data, in Fig. 5, as they highlight the difference
between the fits obtained from both the distributions. The Q-
Q plots of AAU-Outdoor data is representative of what we
observed for the other data-sets, therefore we exclude reporting
them.

We observe that for AAU-Outdoor data, the marginals
are well-modeled by both the log-normal and the Gaussian
distributions. The fit is similar for both distributions, and
it is not apparent which model performs better. As can be
seen in Fig. 6, the marginals in AAU-Outdoor data are very
close to being symmetric, which means that the Gaussian fits
well. However, for the Lille data, it is evident that the log-
normal distribution outperforms the Gaussian in terms of the
marginals. The log-normal is able to model the left tail and the
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TABLE II
AIC VALUES FOR DIFFERENT MODEL CHOICES FOR THE RAW TEMPORAL MOMENTS. BEST MODEL IS INDICATED IN BOLD. NOTE THAT THE JOINT AIC

FOR THE INDEPENDENT MODELS IS THE SUM OF THE AIC VALUES OF THE THREE MARGINALS.

Multivariate
Log-normal

Multivariate
Gaussian

Independent
Log-normal marginals

Independent
Gaussian marginals

Independent
Gamma marginals

Lund Data –219636.0 –219573.9 –217787.6 –217750.2 –217777.0
Lille Data –208357.2 –208665.6 –205657.4 –204816.6 –205589.4

AAU-Industry –29815.61 –28922.53 –29337.3 –28604.83 –29201.75
AAU-Hall –247225.8 –247212.2 –243329.2 –243348.8 –243342.9

AAU-Outdoor –125244.8 –125286.7 –122385.1 –122342.4 –122374.1

center of the distribution very well, but sometimes performs
poorly for the right tail. On the other hand, the Gaussian is
not able to model either of the tails. Moreover, the Gaussian
assigns non-zero probabilities to quantiles below zero, which
is not the case for the data as temporal moments are non-
negative random variables. Hence, the multivariate log-normal
is a better choice. Note that a good marginal fit does not imply
good overall fit in terms of AIC and vice-versa, as is the case
for Lille data. This is simply because the AIC measures a
different property of the model which does not require the
marginals to fit perfectly.

The deviation of the right tail of the data from the fitted
marginals is to be expected due to the low number of such ex-
treme points. Such points are in-frequent and could potentially
arise due to a number of factors such as noise, interference,
measurement conditions, etc. Therefore, we argue that the right
tail is not as important to model perfectly, and thus make no
adjustment for it. However, this should be scrutinized further
in applications where this effect could be important.

VI. MODEL FIT TO RAW TEMPORAL MOMENTS

The parameter estimates, obtained by fitting the proposed
model to the data-sets using (9) and (10), are reported in
Tab. III. We also compute and report the 95% confidence
intervals for each of the estimates in Tab. III, see Appendix A
for details. The confidence intervals are very small for the
mean estimates, and an order of magnitude smaller for the
covariance estimates. The fit of the proposed model to the
various data-sets is shown in Fig. 6 where each row corre-
sponds to a particular data-set. The marginal distributions of
the data and the fitted model is shown on the left, while 2D
scatter plots for all pairs of temporal moments are shown on
the right along with contour lines of the fitted distribution.

Firstly, we observe in Fig. 6 that the distribution of the raw
temporal moments varies across the different data-sets. This is
attributed to the contrasting scenarios that the measurements
were taken in, along with the use of different equipment,
antennas, and measurement settings. We also observe that the
raw temporal moments are highly correlated random variables.
Marginal distributions for Lille and AAU-Industry data are
skewed, while those from other data-sets are more symmetric.
We notice a fanning out of the scatter plots on the top-right
of all the indoor data-sets, which is not present in the outdoor
data. Despite the variability in the data, the proposed model fits
the data well, even the skewed ones. There is a high correlation
between the raw moments, in particular between m0 and m1,

since the basis functions used to compute them in (3) are not
orthogonal. This is captured well by the model.

VII. MODEL FIT TO STANDARDIZED MOMENTS

We now compare the distribution of the standardized tem-
poral moments obtained from the measurements with those
from the proposed model. Mean delay and rms delay spread
are computed from the raw temporal moments using (4), while
the received power is equal to m0. Pair-wise scatter plots of
P0, τ̄ , and τrms from the data and the proposed joint model are
shown in Fig. 7. We also include the samples obtained from
independently fitting a log-normal distribution to the standard-
ized moments from the data-sets. The log-normal is chosen
as it was the best in terms of AIC amongst the independent
models as per Tab. II. Here we exclude the AAU-Industry
data as the low number of sample points makes it difficult
to make any useful conclusions on the correlation behavior.
We observe in Fig. 7 that the standardized temporal moments
are also dependent random variables, and the proposed model
is able to capture their dependency structure. In contrast,
correlation information between the variables is lost when they
are simulated independently.

Sample Pearson correlation coefficients between P0, τ̄ , and
τrms from the data are given in Tab. IV. For paired samples
{(a1, b1), . . . , (am, bm)}, the sample Pearson correlation co-
efficient is defined as

ρ̂a,b =

∑m
j=1(aj − ā)(bj − b̄)√∑m

j=1(aj − ā)2
√∑m

j=1(bj − b̄)2
, (12)

where ā and b̄ are the sample means. We also compute 95%
confidence intervals for the correlation estimates using the
bootstrap method [27, Chapter 6]. The correlation coefficients
obtained from the fitted model, computed from 10,000 samples
to get a robust estimate, are also reported in Tab. IV. Mean
delay and rms delay spread have a positive correlation that
varies from 0.53 for the Lund data to as high as 0.97 for AAU-
Outdoor. The received power is negatively correlated with
both τ and τrms. In general, the correlation tends to increase
with the size of the environment, with the outdoor case being
highly correlated. The model is able to replicate the varying
correlation between P0 and τrms that is observed in the data,
as opposed to having a fixed correlation coefficient suggested
in [11]. Note that the correlation coefficient between τ̄ and
τrms for the model fitted to the Lille data-set is not within the
bootstrap interval. This is due to the banana-like shape of their
scatter plot which is not replicated by the model, see Fig. 7.
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Fig. 5. Quantiles of the measured raw temporal moments from Lille (left) and AAU-Outdoor (right) data versus the theoretical quantiles of fitted log-normal
and Gaussian distributions. The theoretical quantile-quantile line passing through the first and third quantile is shown in red.

TABLE III
PARAMETER ESTIMATES OBTAINED AFTER FITTING. HALF THE WIDTH OF THE 95% CONFIDENCE INTERVAL IS GIVEN IN PARENTHESES.

µ̂(±δ) Σ̂(±δ)

Lund Data
–39 (4× 10−3) 2.8 (0.3)×10−3 2.5 (0.3)×10−3 1.4 (0.3)×10−3

–57 (4×10−3) 2.5 (0.3)×10−3 2.6 (0.3)×10−3 2.1 (0.3)×10−3

–74 (6×10−3) 1.4 (0.3)×10−3 2.1 (0.3)×10−3 5.3 (0.6)×10−3

Lille Data
–29 (0.03) 0.19 (0.02) 0.15 (0.02) 0.11 (0.03)
–47 (0.03) 0.15 (0.02) 0.14 (0.01) 0.19 (0.03)
–63 (0.06) 0.11 (0.03) 0.19 (0.03) 0.70 (0.07)

AAU-Industry
–36 (0.31) 2.34 (0.67) 1.36 (0.40) 1.24 (0.38)
–53 (0.18) 1.36 (0.40) 0.82 (0.23) 0.77 (0.23)
–70 (0.18) 1.24 (0.38) 0.77 (0.23) 0.84 (0.24)

AAU-Hall
–39 (9× 10−3) 1.4 (0.14)×10−2 1.2 (0.12)×10−2 6.6 (0.76)×10−3

–56 (7× 10−3) 1.2 (0.12)×10−2 1.0 (0.11)×10−2 6.2 (0.68)×10−3

–72 (5× 10−3) 6.6 (0.76)×10−3 6.2 (0.68)×10−3 4.6 (0.48)×10−3

AAU-Outdoor
–40 (1.2× 10−2) 1.3 (0.20)×10−2 9.9 (0.14)×10−3 5.2 (0.82)×10−3

–56 (9× 10−3) 9.9 (0.14)×10−3 7.6 (1.1)×10−3 4.2 (0.64)×10−3

–71 (5× 10−3) 5.2 (0.82)×10−3 4.2 (0.64)×10−3 2.7 (0.40)×10−3

TABLE IV
SAMPLE PEARSON CORRELATION COEFFICIENTS BETWEEN STANDARDIZED TEMPORAL MOMENTS OF MEASURED DATA. THE 95% BOOTSTRAP

CONFIDENCE INTERVAL OF THE CORRELATION ESTIMATES, COMPUTED USING 1000 RESAMPLES, ARE GIVEN IN PARENTHESES. THE CORRELATION
COEFFICIENTS FOR THE MODEL IS COMPUTED USING 10,000 SAMPLES OF SIMULATED DATA.

ρ̂P0,τ̄ ρ̂P0,τrms ρ̂τ̄ ,τrms

Data Model Data Model Data Model

Lund Data –0.28 (± 0.06) –0.28 –0.35 (±0.05) –0.36 0.53 (±0.05) 0.52
Lille Data –0.48 (±0.03) –0.51 –0.20 (±0.05) –0.19 0.89 (±0.02) 0.83
AAU-Hall –0.66 (±0.03) –0.65 –0.87 (±0.02) –0.87 0.70 (±0.03) 0.70

AAU-Outdoor –0.91 (±0.01) –0.92 –0.93 (±0.01) –0.93 0.97 (±0.004) 0.97
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Fig. 6. Density estimates and scatter plots of raw temporal moments obtained from the different measurements (shown in black) versus the density and
contour plots of the fitted proposed model (shown in red). Each row corresponds to one of the data-sets. All the axes are in linear scale. The parameter
estimates are in Tab. III.

VIII. CONCLUSIONS

Joint modeling of received power, mean delay, and rms
delay spread provides more accurate models in a range of
scenarios as opposed to independent modeling. The proposed
model of the multivariate log-normal distribution seems to
be a reasonable choice for simulating these standardized
moments, however the fit can be improved by using more
complex models. The proposed model is simple, easy to
simulate from, and easy to fit to new measurements using
standard estimators. The raw temporal moments, and thus
the standardized temporal moments, are dependent random

variables that should be simulated jointly. The correlation,
however, changes from scenario to scenario, and is captured
well by the model. Independent modeling of received power,
mean delay and rms delay spread leads to loss of correlation
information. Hence, reporting their marginal distributions is
insufficient and their means and covariances should also be
included.
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APPENDIX A

We want to compute the confidence intervals for the param-
eter estimates of the multivariate log-normal distribution. Let
the random vector (Y1, . . . , Yd) be modeled as a multivariate
log-normal variable, LN (µ,Σ), where µ and µ are the
mean vector and covariance matrix of the associated Gaussian
random vector (X1, . . . , Xd). Maximum likelihood estimates
of the mean vector and covariance matrix obtained from N
iid observations are given as

µ̂ =
1

N

N∑
n=1

xn, and (13)

Σ̂ =
1

N

N∑
i=1

(xn − µ̂) (xn − µ̂)
>
. (14)

Now, let the K free parameters be combined into a single
vector θ = (α,β), where α = (µ1, . . . , µd), and β =
(Σ11, . . . ,Σdd). Note that Σij = Σji. The Fisher information
matrix reads

I(α,β) =

[
I(α) 0

0 I(β)

]
(15)

where, for 1 ≤ m,n ≤ K, the (m,n) entry of the matrix is

I(α)m,n =
∂µ>

∂αm
Σ−1

∂µ

∂αn
, 1 ≤ m,n ≤ d (16)

I(β)m,n =
1

2
tr

(
Σ−1

∂Σ

∂βm
Σ−1

∂Σ

∂βn

)
. (17)

On further simplification, the entries of the Fisher information
matrix become

I(α)m,n = Σ−1mn, (18)

I(β)m,n =
1

2
tr
(
Σ−1EmΣ−1En

)
, (19)

where Em is a d × d matrix of all zeros except the (i, i)
entry corresponding to βm = Σii which is 1. Note that for
βm = Σij , i 6= j, both (i, j) and (j, i) entry of Em will be 1.
Same goes for En. The 95% confidence interval for the mth

parameter of the Gaussian is

θm ±
1.96√
N

√
I−1m,m

where I−1m,m is the (m,m) entry of I−1.
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