680 research outputs found

    An approach for solving constrained reliability-redundancy allocation problems using cuckoo search algorithm

    Get PDF
    AbstractThe main goal of the present paper is to present a penalty based cuckoo search (CS) algorithm to get the optimal solution of reliability – redundancy allocation problems (RRAP) with nonlinear resource constraints. The reliability – redundancy allocation problem involves the selection of components' reliability in each subsystem and the corresponding redundancy levels that produce maximum benefits subject to the system's cost, weight, volume and reliability constraints. Numerical results of five benchmark problems are reported and compared. It has been shown that the solutions by the proposed approach are all superior to the best solutions obtained by the typical approaches in the literature are shown to be statistically significant by means of unpaired pooled t-test

    An interactive product development model in remanufacturing environment: a chaos-based artificial bee colony approach

    Get PDF
    This research presents an interactive product development model in re-manufacturing environment. The product development model defined a quantitative value model considering product design and development tasks and their value attributes responsible to describe functions of the product. At the last stage of the product development process, re-manufacturing feasibility of used components is incorporated. The consummate feature of this consideration lies in considering variability in cost, weight, and size of the constituted components depending on its types and physical states. Further, this research focuses on reverse logistics paradigm to drive environmental management and economic concerns of the manufacturing industry after the product launching and selling in the market. Moreover, the model is extended by integrating it with RFID technology. This RFID embedded model is aimed at analyzing the economical impact on the account of having advantage of a real time system with reduced inventory shrinkage, reduced processing time, reduced labor cost, process accuracy, and other directly measurable benefits. Consideration the computational complexity involved in product development process reverse logistics, this research proposes; Self-Guided Algorithms & Control (S-CAG) approach for the product development model, and Chaos-based Interactive Artificial Bee Colony (CI-ABC) approach for re-manufacturing model. Illustrative Examples has been presented to test the efficacy of the models. Numerical results from using the S-CAG and CI-ABC for optimal performance are presented and analyzed. The results clearly reveal the efficacy of proposed algorithms when applied to the underlying problems. --Abstract, page iv

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Swarm Intelligent in Bio-Inspired Perspective: A Summary

    Get PDF
    This paper summarizes the research performed in the field of swarm intelligent in recent years. The classification of swarm intelligence based on behavior is introduced.  The principles of each behaviors, i.e. foraging, aggregating, gathering, preying, echolocation, growth, mating, clustering, climbing, brooding, herding, and jumping are described. 3 algorithms commonly used in swarm intelligent are discussed.  At the end of summary, the applications of the SI algorithms are presented

    Swarm Intelligent in Bio-Inspired Perspective: A Summary

    Get PDF
    This paper summarizes the research performed in the field of swarm intelligent in recent years. The classification of swarm intelligence based on behavior is introduced. The principles of each behaviors, i.e. foraging, aggregating, gathering, preying, echolocation, growth, mating, clustering, climbing, brooding, herding, and jumping are described. 3 algorithms commonly used in swarm intelligent are discussed. At the end of summary, the applications of the SI algorithms are presented

    A Review of Wireless Sensor Networks with Cognitive Radio Techniques and Applications

    Get PDF
    The advent of Wireless Sensor Networks (WSNs) has inspired various sciences and telecommunication with its applications, there is a growing demand for robust methodologies that can ensure extended lifetime. Sensor nodes are small equipment which may hold less electrical energy and preserve it until they reach the destination of the network. The main concern is supposed to carry out sensor routing process along with transferring information. Choosing the best route for transmission in a sensor node is necessary to reach the destination and conserve energy. Clustering in the network is considered to be an effective method for gathering of data and routing through the nodes in wireless sensor networks. The primary requirement is to extend network lifetime by minimizing the consumption of energy. Further integrating cognitive radio technique into sensor networks, that can make smart choices based on knowledge acquisition, reasoning, and information sharing may support the network's complete purposes amid the presence of several limitations and optimal targets. This examination focuses on routing and clustering using metaheuristic techniques and machine learning because these characteristics have a detrimental impact on cognitive radio wireless sensor node lifetime
    • …
    corecore