451 research outputs found

    Cryptanalysis of an e_cient three-party password-based key exchange scheme

    Get PDF
    AbstractIn order to secure communications between two clients with a trusted server's help in public network environments, a three-party password-based authenticated key exchange (3PAKE) scheme is used to provide the transaction confidentiality and e_ciency. In 2010, Lou-Huang proposed a new simple three-party password-based authenticated key exchange (LH-3PAKE) scheme based on elliptic curve cryptography (ECC). By analysis, Lou-Huang claimed that the proposed LH- 3PAKE scheme is not only secure against various attacks, but also more e_cient than previously proposed 3PAKE schemes. However, this paper demonstrates LH-3PAKE scheme is vulnerable to o_-line password guessing attacks by an attacker

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    On Security Analysis of Recent Password Authentication and Key Agreement Schemes Based on Elliptic Curve Cryptography

    Get PDF
    Secure and efficient mutual authentication and key agreement schemes form the basis for any robust network communication system. Elliptic Curve Cryptography (ECC) has emerged as one of the most successful Public Key Cryptosystem that efficiently meets all the security challenges. Comparison of ECC with other Public Key Cryptosystems (RSA, Rabin, ElGamal) shows that it provides equal level of security for a far smaller bit size, thereby substantially reducing the processing overhead. This makes it suitable for constrained environments like wireless networks and mobile devices as well as for security sensitive applications like electronic banking, financial transactions and smart grids. With the successful implementation of ECC in security applications (e-passports, e-IDs, embedded systems), it is getting widely commercialized. ECC is simple and faster and is therefore emerging as an attractive alternative for providing security in lightweight device, which contributes to its popularity in the present scenario. In this paper, we have analyzed some of the recent password based authentication and key agreement schemes using ECC for various environments. Furthermore, we have carried out security, functionality and performance comparisons of these schemes and found that they are unable to satisfy their claimed security goals

    Security of IoT in 5G Cellular Networks: A Review of Current Status, Challenges and Future Directions

    Get PDF
    The Internet of Things (IoT) refers to a global network that integrates real life physical objects with the virtual world through the Internet for making intelligent decisions. In a pervasive computing environment, thousands of smart devices, that are constrained in storage, battery backup and computational capability, are connected with each other. In such an environment, cellular networks that are evolving from 4G to 5G, are set to play a crucial role. Distinctive features like high bandwidth, wider coverage, easy connectivity, in-built billing mechanism, interface for M2M communication, etc., makes 5G cellular network a perfect candidate to be adopted as a backbone network for the future IoT. However, due to resource constrained nature of the IoT devices, researchers have anticipated several security and privacy issues in IoT deployments over 5G cellular network. Off late, several schemes and protocols have been proposed to handle these issues. This paper performs a comprehensive review of such schemes and protocols proposed in recent times. Different open security issues, challenges and future research direction are also summarized in this review paper

    1. Kryptotag - Workshop über Kryptographie

    Get PDF
    Der Report enthält eine Sammlung aller Beiträge der Teilnehmer des 1. Kryptotages am 1. Dezember 2004 in Mannheim

    An Overview of Cryptography (Updated Version, 3 March 2016)

    Get PDF
    There are many aspects to security and many applications, ranging from secure commerce and payments to private communications and protecting passwords. One essential aspect for secure communications is that of cryptography...While cryptography is necessary for secure communications, it is not by itself sufficient. This paper describes the first of many steps necessary for better security in any number of situations. A much shorter, edited version of this paper appears in the 1999 edition of Handbook on Local Area Networks published by Auerbach in September 1998

    Contributions to Securing Software Updates in IoT

    Get PDF
    The Internet of Things (IoT) is a large network of connected devices. In IoT, devices can communicate with each other or back-end systems to transfer data or perform assigned tasks. Communication protocols used in IoT depend on target applications but usually require low bandwidth. On the other hand, IoT devices are constrained, having limited resources, including memory, power, and computational resources. Considering these limitations in IoT environments, it is difficult to implement best security practices. Consequently, network attacks can threaten devices or the data they transfer. Thus it is crucial to react quickly to emerging vulnerabilities. These vulnerabilities should be mitigated by firmware updates or other necessary updates securely. Since IoT devices usually connect to the network wirelessly, such updates can be performed Over-The-Air (OTA). This dissertation presents contributions to enable secure OTA software updates in IoT. In order to perform secure updates, vulnerabilities must first be identified and assessed. In this dissertation, first, we present our contribution to designing a maturity model for vulnerability handling. Next, we analyze and compare common communication protocols and security practices regarding energy consumption. Finally, we describe our designed lightweight protocol for OTA updates targeting constrained IoT devices. IoT devices and back-end systems often use incompatible protocols that are unable to interoperate securely. This dissertation also includes our contribution to designing a secure protocol translator for IoT. This translation is performed inside a Trusted Execution Environment (TEE) with TLS interception. This dissertation also contains our contribution to key management and key distribution in IoT networks. In performing secure software updates, the IoT devices can be grouped since the updates target a large number of devices. Thus, prior to deploying updates, a group key needs to be established among group members. In this dissertation, we present our designed secure group key establishment scheme. Symmetric key cryptography can help to save IoT device resources at the cost of increased key management complexity. This trade-off can be improved by integrating IoT networks with cloud computing and Software Defined Networking (SDN).In this dissertation, we use SDN in cloud networks to provision symmetric keys efficiently and securely. These pieces together help software developers and maintainers identify vulnerabilities, provision secret keys, and perform lightweight secure OTA updates. Furthermore, they help devices and systems with incompatible protocols to be able to interoperate
    • …
    corecore