4 research outputs found

    Novel Method of Improving Quality of Service for Voice over Internet Protocol Traffic in Mobile Ad Hoc Networks

    Get PDF
    In recent years, the application of Mobile Ad-hoc Network (MANET) with Voice over Internet Protocol (VoIP) has been increased.  However, the level of Quality of Service (QoS) for VoIP traffic in MANET, while there is no infrastructure, will reduce when dealing with a large number of calls. In this type of dynamic environment, the developing of a new infrastructure becomes more costly and time-consuming. In this paper, we proposed an efficient method, called the Quality of Service-Nearest Neighbor (QoS-NN), to improve the QoS level for VoIP in order to manage the huge number of calls over MANET network. We utilized the Ad-hoc On-demand Distance Vector (AODV) protocol as the underlying routing protocol to implement our proposed method. We evaluated the proposed QoS-NN method using Network Simulator version 2 (NS2). The performance of the proposed QoS-NN method was compared with Lexicographic order method. The comparison was evaluated in terms of R-factor, end-to-end delay, packet loss ratio, and packet delivery ratio performance metrics. In addition, the proposed method evaluated under different network parameters such as VoIP CODECs, node mobility speed, number of calls and number of nodes. The comparison results indicate that the proposed QoS-NN outperform the Lexicographic order method

    U2RV: UAV-assisted reactive routing protocol for VANETs

    Get PDF
    When it comes to keeping the data routing robust and effective in Vehicular Ad hoc Networks (VANETs), stable and durable connectivity constitutes the keystone to ensure successful point-to-point communication. Since VANETs can comprise all kinds of mobile vehicles moving and changing direction frequently, this may result in frequent link failures and network partitions. Moreover, when VANETs are deployed in a city environment, another problem arises, that is, the existing obstructions (e.g., buildings, trees, hoppers, etc.) preventing the line-of-sight between vehicles, thus degrading wireless transmissions. Therefore, it is more complicated to design a routing technique that adapts to frequent changes in the topology. In order to settle all these problems, in this work, we design a flooding scheme that automatically reacts at each topology variation while overcoming the present obstacles while exchanging data in ad hoc mode with drones that are commonly called Unmanned Aerial Vehicles (UAVs). Also, the aim of this work is to explore well-regulated routing paths providing a long lifetime connectivity based on the amount of traffic and the expiration time of each discovered path, respectively. A set of experiments is carried out using simulation, and the outcomes are confronted with similar protocols based on a couple of metrics. The results clearly show that the assistance of UAVs to vehicles is capable to provide high delivery ratios and low delivery delays while efficiently extending the network connectivity

    An efficient routing protocol for the QoS support of large-scale MANETs

    No full text
    The hierarchical routing algorithm is categorized as a kind of routing method using node clustering to create a hierarchical structure in large-scale mobile ad hoc network (LMANET). In this paper, we proposed a new hierarchical clustering algorithm (HCAL) and a corresponded protocol for hierarchical routing in LMANET. The HCAL is designed based on a cost metric in the form of the link expiration time and node's relative degree. Correspondingly, the routing protocol for HCAL adopts a reactive protocol to control the existing cluster head (CH) nodes and handle proactive nodes to be considered as a cluster in LMANET. Hierarchical clustering algorithm jointly utilizes table-driven and on-demand routing by using a combined weight metric to search dominant set of nodes. This set is composed by link expiration time and node's relative degree to establish the intra/intercommunication paths in LMANET. The performance of the proposed algorithm and protocol is numerically evaluated in average end-to-end delay, number of CH per round, iteration count between the CHs, average CH keeping time, normalized routing overhead, and packet delivery ratio over a number of randomly generated benchmark scenarios. Furthermore, to corroborate the actual effectiveness of the HCAL algorithm, extensive performance comparisons are carried out with some state-of-the-art routing algorithms, namely, Dynamic Doppler Velocity Clustering, Signal Characteristic-Based Clustering, Dynamic Link Duration Clustering, and mobility-based clustering algorithms. Copyright © 2017 John Wiley & Sons, Ltd
    corecore