1,274 research outputs found

    In the Direction of Service Guarantees for Virtualized Network Functions

    Get PDF
    The trend of consolidating network functions from specialized hardware to software running on virtualization servers brings significant advantages for reducing costs and simplifying service deployment. However, virtualization techniques have significant limitations when it comes to networking as there is no support for guaranteeing that network functions meet their service requirements. In this paper, we present a design for providing service guarantees to virtualized network functions based on rate control. The design is a combination of rate regulation through token bucket filters and the regular scheduling mechanisms in operating systems. It has the attractive property that traffic profiles are maintained throughout a series of network functions, which makes it well suited for service function chaining. We discuss implementation alternatives for the design and demonstrate how it can be implemented on two virtualization platforms: LXC containers and the KVM hypervisor. To evaluate the design, we conduct experiments where we measure throughput and latency using IP forwarders (routers) as examples of virtual network functions. Two significant factors for performance are investigated: the design of token buckets and the packet clustering effect that comes from scheduling. Finally, we demonstrate how performance guarantees are achieved for rate-controlled virtual routers under different scenarios.publishedVersio

    Silent MST approximation for tiny memory

    Get PDF
    In network distributed computing, minimum spanning tree (MST) is one of the key problems, and silent self-stabilization one of the most demanding fault-tolerance properties. For this problem and this model, a polynomial-time algorithm with O(log2 ⁣n)O(\log^2\!n) memory is known for the state model. This is memory optimal for weights in the classic [1,poly(n)][1,\text{poly}(n)] range (where nn is the size of the network). In this paper, we go below this O(log2 ⁣n)O(\log^2\!n) memory, using approximation and parametrized complexity. More specifically, our contributions are two-fold. We introduce a second parameter~ss, which is the space needed to encode a weight, and we design a silent polynomial-time self-stabilizing algorithm, with space O(logns)O(\log n \cdot s). In turn, this allows us to get an approximation algorithm for the problem, with a trade-off between the approximation ratio of the solution and the space used. For polynomial weights, this trade-off goes smoothly from memory O(logn)O(\log n) for an nn-approximation, to memory O(log2 ⁣n)O(\log^2\!n) for exact solutions, with for example memory O(lognloglogn)O(\log n\log\log n) for a 2-approximation

    Estimation of the parameters of token-buckets in multi-hop environments

    Full text link
    Bandwidth verification in shaping scenarios receives much attention of both operators and clients because of its impact on Quality of Service (QoS). As a result, measuring shapers’ parameters, namely the Committed Information Rate (CIR), Peak Information Rate (PIR) and Maximum Burst Size (MBS), is a relevant issue when it comes to assess QoS. In this paper, we present a novel algorithm, TBCheck, which serves to accurately measure such parameters with minimal intrusiveness. These measurements are the cornerstone for the validation of Service Level Agreements (SLA) with multiple shaping elements along an end-to-end path. As a further outcome of this measurement method, we define a formal taxonomy of multi-hop shaping scenarios. A thorough performance evaluation covering the latter taxonomy shows the advantages of TBCheck compared to other tools in the state of the art, yielding more accurate results even in the presence of cross-traffic. Additionally, our findings show that MBS estimation is unfeasible when the link load is high, regardless the measurement technique, because the token-bucket will always be empty. Consequently, we propose an estimation policy which maximizes the accuracy by measuring CIR during busy hours and PIR and MBS during off-peak hoursThis work was partially supported by the Spanish Ministry of Economy and Competitiveness and the European Regional Development Fund under the project Tráfica (MINECO/FEDER TEC2015-69417-C2-1-R
    corecore