41,251 research outputs found

    Smart FRP Composite Sandwich Bridge Decks in Cold Regions

    Get PDF
    INE/AUTC 12.0

    Piezo-electromechanical smart materials with distributed arrays of piezoelectric transducers: Current and upcoming applications

    Get PDF
    This review paper intends to gather and organize a series of works which discuss the possibility of exploiting the mechanical properties of distributed arrays of piezoelectric transducers. The concept can be described as follows: on every structural member one can uniformly distribute an array of piezoelectric transducers whose electric terminals are to be connected to a suitably optimized electric waveguide. If the aim of such a modification is identified to be the suppression of mechanical vibrations then the optimal electric waveguide is identified to be the 'electric analog' of the considered structural member. The obtained electromechanical systems were called PEM (PiezoElectroMechanical) structures. The authors especially focus on the role played by Lagrange methods in the design of these analog circuits and in the study of PEM structures and we suggest some possible research developments in the conception of new devices, in their study and in their technological application. Other potential uses of PEMs, such as Structural Health Monitoring and Energy Harvesting, are described as well. PEM structures can be regarded as a particular kind of smart materials, i.e. materials especially designed and engineered to show a specific andwell-defined response to external excitations: for this reason, the authors try to find connection between PEM beams and plates and some micromorphic materials whose properties as carriers of waves have been studied recently. Finally, this paper aims to establish some links among some concepts which are used in different cultural groups, as smart structure, metamaterial and functional structural modifications, showing how appropriate would be to avoid the use of different names for similar concepts. © 2015 - IOS Press and the authors

    The Application of PSO in Structural Damage Detection: An Analysis of the Previously Released Publications (2005–2020)

    Get PDF
    The structural health monitoring (SHM) approach plays a key role not only in structural engineering but also in other various engineering disciplines by evaluating the safety and performance monitoring of the structures. The structural damage detection methods could be regarded as the core of SHM strategies. That is because the early detection of the damages and measures to be taken to repair and replace the damaged members with healthy ones could lead to economic advantages and would prevent human disasters. The optimization-based methods are one of the most popular techniques for damage detection. Using these methods, an objective function is minimized by an optimization algorithm during an iterative procedure. The performance of optimization algorithms has a significant impact on the accuracy of damage identification methodology. Hence, a wide variety of algorithms are employed to address optimization-based damage detection problems. Among different algorithms, the particle swarm optimization (PSO) approach has been of the most popular ones. PSO was initially proposed by Kennedy and Eberhart in 1995, and different variants were developed to improve its performance. This work investigates the objectives, methodologies, and results obtained by over 50 studies (2005-2020) in the context of the structural damage detection using PSO and its variants. Then, several important open research questions are highlighted. The paper also provides insights on the frequently used methodologies based on PSO, the computational time, and the accuracy of the existing methodologies

    Structural health monitoring and bridge condition assessment

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2016This research is mainly in the field of structural identification and model calibration, optimal sensor placement, and structural health monitoring application for large-scale structures. The ultimate goal of this study is to identify the structure behavior and evaluate the health condition by using structural health monitoring system. To achieve this goal, this research firstly established two fiber optic structural health monitoring systems for a two-span truss bridge and a five-span steel girder bridge. Secondly, this research examined the empirical mode decomposition (EMD) method’s application by using the portable accelerometer system for a long steel girder bridge, and identified the accelerometer number requirements for comprehensively record bridge modal frequencies and damping. Thirdly, it developed a multi-direction model updating method which can update the bridge model by using static and dynamic measurement. Finally, this research studied the optimal static strain sensor placement and established a new method for model parameter identification and damage detection.Chapter 1: Introduction -- Chapter 2: Structural Health Monitoring of the Klehini River Bridge -- Chapter 3: Ambient Loading and Modal Parameters for the Chulitna River Bridge -- Chapter 4: Multi-direction Bridge Model Updating using Static and Dynamic Measurement -- Chapter 5: Optimal Static Strain Sensor Placement for Bridge Model Parameter Identification by using Numerical Optimization Method -- Chapter 6: Conclusions and Future Work

    Automated crack detection in conductive smart-concrete structures using a resistor mesh model

    Get PDF
    Various nondestructive evaluation techniques are currently used to automatically detect and monitor cracks in concrete infrastructure. However, these methods often lack the scalability and cost-effectiveness over large geometries. A solution is the use of self-sensing carbon-doped cementitious materials. These self-sensing materials are capable of providing a measurable change in electrical output that can be related to their damage state. Previous work by the authors showed that a resistor mesh model could be used to track damage in structural components fabricated from electrically conductive concrete, where damage was located through the identification of high resistance value resistors in a resistor mesh model. In this work, an automated damage detection strategy that works through placing high value resistors into the previously developed resistor mesh model using a sequential Monte Carlo method is introduced. Here, high value resistors are used to mimic the internal condition of damaged cementitious specimens. The proposed automated damage detection method is experimentally validated using a 500x500x50500 x 500 x 50 mm reinforced cement paste plate doped with multi-walled carbon nanotubes exposed to 100 identical impact tests. Results demonstrate that the proposed Monte Carlo method is capable of detecting and localizing the most prominent damage in a structure, demonstrating that automated damage detection in smart-concrete structures is a promising strategy for real-time structural health monitoring of civil infrastructure

    Damage identification in structural health monitoring: a brief review from its implementation to the Use of data-driven applications

    Get PDF
    The damage identification process provides relevant information about the current state of a structure under inspection, and it can be approached from two different points of view. The first approach uses data-driven algorithms, which are usually associated with the collection of data using sensors. Data are subsequently processed and analyzed. The second approach uses models to analyze information about the structure. In the latter case, the overall performance of the approach is associated with the accuracy of the model and the information that is used to define it. Although both approaches are widely used, data-driven algorithms are preferred in most cases because they afford the ability to analyze data acquired from sensors and to provide a real-time solution for decision making; however, these approaches involve high-performance processors due to the high computational cost. As a contribution to the researchers working with data-driven algorithms and applications, this work presents a brief review of data-driven algorithms for damage identification in structural health-monitoring applications. This review covers damage detection, localization, classification, extension, and prognosis, as well as the development of smart structures. The literature is systematically reviewed according to the natural steps of a structural health-monitoring system. This review also includes information on the types of sensors used as well as on the development of data-driven algorithms for damage identification.Peer ReviewedPostprint (published version

    Optimal Number and Location of Sensors for Structural Damage Detection using the Theory of Geometrical Viewpoint and Parameter Subset Selection Method

    Get PDF
    The recorded responses at predefined sensor placements are used as input to solve an inverse structural damage detection problem. The error rate that noise causes from the recorded responses of the sensors is a significant issue in damage detection methods. Therefore, an optimal number and location of sensors is a goal to achieve the lowest error rate in structural damage detection. To overcome this problem, an algorithm (GVPSS) based on a Geometrical Viewpoint (GV) of optimal sensor placement and Parameter Subset Selection (PSS) method is proposed. The goal of the GVPSS algorithm is to minimize the effect of noise on damage detection problem. Therefore, the fitness function based on error in damage detection is minimized by GVPSS. In this method, the degrees of freedom are arranged to place sensors using a fitness function based on GV theory. Then, the optimal number and location of sensors are found on these arranged the degrees of freedom using the objective function. The efficiency of the proposed method is studied in a 52-bar dome structure under static and dynamic loadings. In the examples, damages are detected in two states: 1) using responses recorded at all DOFs, 2) using responses recorded at the optimal number and location of sensors obtained by GVPSS. The results showed that the damage detection error in state 2 is approximately equal to the error in state 1. Therefore, the GVPSS have the high performance to find the optimal number and location of sensors for structural damage detection
    • …
    corecore