116 research outputs found

    Recent Advances in Watermarking for Scalable Video Coding

    Get PDF

    Robust and efficient video/image transmission

    Get PDF
    The Internet has become a primary medium for information transmission. The unreliability of channel conditions, limited channel bandwidth and explosive growth of information transmission requests, however, hinder its further development. Hence, research on robust and efficient delivery of video/image content is demanding nowadays. Three aspects of this task, error burst correction, efficient rate allocation and random error protection are investigated in this dissertation. A novel technique, called successive packing, is proposed for combating multi-dimensional (M-D) bursts of errors. A new concept of basis interleaving array is introduced. By combining different basis arrays, effective M-D interleaving can be realized. It has been shown that this algorithm can be implemented only once and yet optimal for a set of error bursts having different sizes for a given two-dimensional (2-D) array. To adapt to variable channel conditions, a novel rate allocation technique is proposed for FineGranular Scalability (FGS) coded video, in which real data based rate-distortion modeling is developed, constant quality constraint is adopted and sliding window approach is proposed to adapt to the variable channel conditions. By using the proposed technique, constant quality is realized among frames by solving a set of linear functions. Thus, significant computational simplification is achieved compared with the state-of-the-art techniques. The reduction of the overall distortion is obtained at the same time. To combat the random error during the transmission, an unequal error protection (UEP) method and a robust error-concealment strategy are proposed for scalable coded video bitstreams

    Robust P2P Live Streaming

    Get PDF
    Projecte fet en col.laboraciĂł amb la FundaciĂł i2CATThe provisioning of robust real-time communication services (voice, video, etc.) or media contents through the Internet in a distributed manner is an important challenge, which will strongly influence in current and future Internet evolution. Aware of this, we are developing a project named Trilogy leaded by the i2CAT Foundation, which has as main pillar the study, development and evaluation of Peer-to-Peer (P2P) Live streaming architectures for the distribution of high-quality media contents. In this context, this work concretely covers media coding aspects and proposes the use of Multiple Description Coding (MDC) as a flexible solution for providing robust and scalable live streaming over P2P networks. This work describes current state of the art in media coding techniques and P2P streaming architectures, presents the implemented prototype as well as its simulation and validation results

    Layered Wyner-Ziv video coding: a new approach to video compression and delivery

    Get PDF
    Following recent theoretical works on successive Wyner-Ziv coding, we propose a practical layered Wyner-Ziv video coder using the DCT, nested scalar quantiza- tion, and irregular LDPC code based Slepian-Wolf coding (or lossless source coding with side information at the decoder). Our main novelty is to use the base layer of a standard scalable video coder (e.g., MPEG-4/H.26L FGS or H.263+) as the decoder side information and perform layered Wyner-Ziv coding for quality enhance- ment. Similar to FGS coding, there is no performance diÂźerence between layered and monolithic Wyner-Ziv coding when the enhancement bitstream is generated in our proposed coder. Using an H.26L coded version as the base layer, experiments indicate that Wyner-Ziv coding gives slightly worse performance than FGS coding when the channel (for both the base and enhancement layers) is noiseless. However, when the channel is noisy, extensive simulations of video transmission over wireless networks conforming to the CDMA2000 1X standard show that H.26L base layer coding plus Wyner-Ziv enhancement layer coding are more robust against channel errors than H.26L FGS coding. These results demonstrate that layered Wyner-Ziv video coding is a promising new technique for video streaming over wireless networks. For scalable video transmission over the Internet and 3G wireless networks, we propose a system for receiver-driven layered multicast based on layered Wyner-Ziv video coding and digital fountain coding. Digital fountain codes are near-capacity erasure codes that are ideally suited for multicast applications because of their rate- less property. By combining an error-resilient Wyner-Ziv video coder and rateless fountain codes, our system allows reliable multicast of high-quality video to an arbi- trary number of heterogeneous receivers without the requirement of feedback chan- nels. Extending this work on separate source-channel coding, we consider distributed joint source-channel coding by using a single channel code for both video compression (via Slepian-Wolf coding) and packet loss protection. We choose Raptor codes - the best approximation to a digital fountain - and address in detail both encoder and de- coder designs. Simulation results show that, compared to one separate design using Slepian-Wolf compression plus erasure protection and another based on FGS coding plus erasure protection, the proposed joint design provides better video quality at the same number of transmitted packets

    A novel multimedia adaptation architecture and congestion control mechanism designed for real-time interactive applications

    Get PDF
    PhDThe increasing use of interactive multimedia applications over the Internet has created a problem of congestion. This is because a majority of these applications do not respond to congestion indicators. This leads to resource starvation for responsive flows, and ultimately excessive delay and losses for all flows therefore loss of quality. This results in unfair sharing of network resources and increasing the risk of network ‘congestion collapse’. Current Congestion Control Mechanisms such as ‘TCP-Friendly Rate Control’ (TFRC) have been able to achieve ‘fair-share’ of network resource when competing with responsive flows such as TCP, but TFRC’s method of congestion response (i.e. to reduce Packet Rate) is not ideally matched for interactive multimedia applications which maintain a fixed Frame Rate. This mismatch of the two rates (Packet Rate and Frame Rate) leads to buffering of frames at the Sender Buffer resulting in delay and loss, and an unacceptable reduction of quality or complete loss of service for the end-user. To address this issue, this thesis proposes a novel Congestion Control Mechanism which is referred to as ‘TCP-friendly rate control – Fine Grain Scalable’ (TFGS) for interactive multimedia applications. This new approach allows multimedia frames (data) to be sent as soon as they are generated, so that the multimedia frames can reach the destination as quickly as possible, in order to provide an isochronous interactive service. This is done by maintaining the Packet Rate of the Congestion Control Mechanism (CCM) at a level equivalent to the Frame Rate of the Multimedia Encoder.The response to congestion is to truncate the Packet Size, hence reducing the overall bitrate of the multimedia stream. This functionality of the Congestion Control Mechanism is referred to as Packet Size Truncation (PST), and takes advantage of adaptive multimedia encoding, such as Fine Grain Scalable (FGS), where the multimedia frame is encoded in order of significance, Most to Least Significant Bits. The Multimedia Adaptation Manager (MAM) truncates the multimedia frame to the size indicated by the Packet Size Truncation function of the CCM, accurately mapping user demand to available network resource. Additionally Fine Grain Scalable encoding can offer scalability at byte level granularity, providing a true match to available network resources. This approach has the benefits of achieving a ‘fair-share’ of network resource when competing with responsive flows (as similar to TFRC CCM), but it also provides an isochronous service which is of crucial benefit to real-time interactive services. Furthermore, results illustrate that an increased number of interactive multimedia flows (such as voice) can be carried over congested networks whilst maintaining a quality level equivalent to that of a standard landline telephone. This is because the loss and delay arising from the buffering of frames at the Sender Buffer is completely removed. Packets sent maintain a fixed inter-packet-gap-spacing (IPGS). This results in a majority of packets arriving at the receiving end at tight time intervals. Hence, this avoids the need of using large Playout (de-jitter) Buffer sizes and adaptive Playout Buffer configurations. As a result this reduces delay, improves interactivity and Quality of Experience (QoE) of the multimedia application

    Scalable authentication of MPEG-4 streams

    Get PDF
    schemes for authenticating MPEG-4 streams: the Flat Authenticatio

    Slight-Delay Shaped Variable Bit Rate (SD-SVBR) Technique for Video Transmission

    Get PDF
    The aim of this thesis is to present a new shaped Variable Bit Rate (VBR) for video transmission, which plays a crucial role in delivering video traffic over the Internet. This is due to the surge of video media applications over the Internet and the video typically has the characteristic of a highly bursty traffic, which leads to the Internet bandwidth fluctuation. This new shaped algorithm, referred to as Slight Delay - Shaped Variable Bit Rate (SD-SVBR), is aimed at controlling the video rate for video application transmission. It is designed based on the Shaped VBR (SVBR) algorithm and was implemented in the Network Simulator 2 (ns-2). SVBR algorithm is devised for real-time video applications and it has several limitations and weaknesses due to its embedded estimation or prediction processes. SVBR faces several problems, such as the occurrence of unwanted sharp decrease in data rate, buffer overflow, the existence of a low data rate, and the generation of a cyclical negative fluctuation. The new algorithm is capable of producing a high data rate and at the same time a better quantization parameter (QP) stability video sequence. In addition, the data rate is shaped efficiently to prevent unwanted sharp increment or decrement, and to avoid buffer overflow. To achieve the aim, SD-SVBR has three strategies, which are processing the next Group of Picture (GoP) video sequence and obtaining the QP-to-data rate list, dimensioning the data rate to a higher utilization of the leaky-bucket, and implementing a QP smoothing method by carefully measuring the effects of following the previous QP value. However, this algorithm has to be combined with a network feedback algorithm to produce a better overall video rate control. A combination of several video clips, which consisted of a varied video rate, has been used for the purpose of evaluating SD-SVBR performance. The results showed that SD-SVBR gains an impressive overall Peak Signal-to-Noise Ratio (PSNR) value. In addition, in almost all cases, it gains a high video rate but without buffer overflow, utilizes the buffer well, and interestingly, it is still able to obtain smoother QP fluctuation

    Video Traffic Characteristics of Modern Encoding Standards: H.264/AVC with SVC and MVC Extensions and H.265/HEVC

    Get PDF
    abstract: Video encoding for multimedia services over communication networks has significantly advanced in recent years with the development of the highly efficient and flexible H.264/AVC video coding standard and its SVC extension. The emerging H.265/HEVC video coding standard as well as 3D video coding further advance video coding for multimedia communications. This paper first gives an overview of these new video coding standards and then examines their implications for multimedia communications by studying the traffic characteristics of long videos encoded with the new coding standards. We review video coding advances from MPEG-2 and MPEG-4 Part 2 to H.264/AVC and its SVC and MVC extensions as well as H.265/HEVC. For single-layer (nonscalable) video, we compare H.265/HEVC and H.264/AVC in terms of video traffic and statistical multiplexing characteristics. Our study is the first to examine the H.265/HEVC traffic variability for long videos. We also illustrate the video traffic characteristics and statistical multiplexing of scalable video encoded with the SVC extension of H.264/AVC as well as 3D video encoded with the MVC extension of H.264/AVC.View the article as published at https://www.hindawi.com/journals/tswj/2014/189481
    • 

    corecore