14,819 research outputs found

    Solving nonlinear problems by Ostrowski Chun type parametric families

    Full text link
    In this paper, by using a generalization of Ostrowski' and Chun's methods two bi-parametric families of predictor-corrector iterative schemes, with order of convergence four for solving system of nonlinear equations, are presented. The predictor of the first family is Newton's method, and the predictor of the second one is Steffensen's scheme. One of them is extended to the multidimensional case. Some numerical tests are performed to compare proposed methods with existing ones and to confirm the theoretical results. We check the obtained results by solving the molecular interaction problem.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02 and FONDOCYT, Republica Dominicana.Cordero Barbero, A.; Maimo, J.; Torregrosa Sánchez, JR.; Vassileva, M. (2015). Solving nonlinear problems by Ostrowski Chun type parametric families. Journal of Mathematical Chemistry. 53(1):430-449. https://doi.org/10.1007/s10910-014-0432-zS430449531M.S. Petkovic̀, B. Neta, L.D. Petkovic̀, J. Dz̆unic̀, Multipoint Methods for Solving Nonlinear Equations (Academic, New York, 2013)M. Mahalakshmi, G. Hariharan, K. Kannan, The wavelet methods to linear and nonlinear reaction–diffusion model arising in mathematical chemistry. J. Math. Chem. 51(9), 2361–2385 (2013)P.G. Logrado, J.D.M. Vianna, Partitioning technique procedure revisited: Formalism and first application to atomic problems. J. Math. Chem. 22, 107–116 (1997)C.G. Jesudason, I. Numerical nonlinear analysis: differential methods and optimization applied to chemical reaction rate determination. J. Math. Chem. 49, 1384–1415 (2011)K. Maleknejad, M. Alizadeh, An efficient numerical scheme for solving hammerstein integral equation arisen in chemical phenomenon. Procedia Comput. Sci. 3, 361–364 (2011)R.C. Rach, J.S. Duan, A.M. Wazwaz, Solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. J. Math. Chem. 52, 255–267 (2014)J.F. Steffensen, Remarks on iteration. Skand. Aktuar Tidskr. 16, 64–72 (1933)J.M. Ortega, W.C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables (Academic, New York, 1970)H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration. J. ACM 21, 643–651 (1974)J.R. Sharma, R.K. Guha, R. Sharma, An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 62, 307–323 (2013)J.R. Sharma, H. Arora, On efficient weighted-Newton methods for solving systems of nonlinear equations. Appl. Math. Comput. 222, 497–506 (2013)M. Abad, A. Cordero, J.R. Torregrosa, Fourth- and fifth-order methods for solving nonlinear systems of equations: an application to the Global positioning system. Abstr. Appl. Anal.(2013) Article ID:586708. doi: 10.1155/2013/586708F. Soleymani, T. Lotfi, P. Bakhtiari, A multi-step class of iterative methods for nonlinear systems. Optim. Lett. 8, 1001–1015 (2014)M.T. Darvishi, N. Darvishi, SOR-Steffensen-Newton method to solve systems of nonlinear equations. Appl. Math. 2(2), 21–27 (2012). doi: 10.5923/j.am.20120202.05F. Awawdeh, On new iterative method for solving systems of nonlinear equations. Numer. Algorithms 5(3), 395–409 (2010)D.K.R. Babajee, A. Cordero, F. Soleymani, J.R. Torregrosa, On a novel fourth-order algorithm for solving systems of nonlinear equations. J. Appl. Math. (2012) Article ID:165452. doi: 10.1155/2012/165452A. Cordero, J.R. Torregrosa, M.P. Vassileva, Pseudocomposition: a technique to design predictor–corrector methods for systems of nonlinear equations. Appl. Math. Comput. 218(23), 1496–1504 (2012)A. Cordero, J.R. Torregrosa, M.P. Vassileva, Increasing the order of convergence of iterative schemes for solving nonlinear systems. J. Comput. Appl. Math. 252, 86–94 (2013)A.M. Ostrowski, Solution of Equations and System of Equations (Academic, New York, 1966)C. Chun, Construction of Newton-like iterative methods for solving nonlinear equations. Numer. Math. 104, 297–315 (2006)R. King, A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973)A. Cordero, J.R. Torregrosa, Low-complexity root-finding iteration functions with no derivatives of any order of convergence. J. Comput. Appl. Math. (2014). doi: 10.1016/j.cam.2014.01.024A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton Jarratts composition. Numer. Algorithms 55, 87–99 (2010)P. Jarratt, Some fourth order multipoint methods for solving equations. Math. Comput. 20, 434–437 (1966)A. Cordero, J.R. Torregrosa, Variants of Newtons method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)Z. Liu, Q. Zheng, P. Zhao, A variant of Steffensens method of fourth-order convergence and its applications. Appl. Math. Comput. 216, 1978–1983 (2010)A. Cordero, J.R. Torregrosa, A class of Steffensen type methods with optimal order of convergence. Appl. Math. Comput. 217, 7653–7659 (2011)L.B. Rall, New York, Computational Solution of Nonlinear Operator Equations (Robert E. Krieger Publishing Company Inc, New York, 1969

    Multidimensional Homeier's generalized class and its application to planar 1D Bratu problem

    Full text link
    [EN] In this paper, a parametric family of iterative methods for solving nonlinear systems, including Homeier’s scheme is presented, proving its third-order of convergence. The numerical section is devoted to obtain an estimation of the solution of the classical Bratu problem by transforming it in a nonlinear system by using finite differences, and solving it with different elements of the iterative family.This research was supported by Ministerio de Economía y Competitividad MTM2014-52016-C02-02.Cordero Barbero, A.; Franqués García, AM.; Torregrosa Sánchez, JR. (2015). Multidimensional Homeier's generalized class and its application to planar 1D Bratu problem. Journal of the Spanish Society of Applied Mathematics. 70(1):1-10. https://doi.org/10.1007/s40324-015-0037-xS110701Abad, M. F., Cordero, A., Torregrosa, J. R.: Fourth-and fifth-order for solving nonlinear systems of equations: an application to the global positioning system, Abstr. Appl. Anal. (2013) (Article ID 586708)Andreu, C., Cambil, N., Cordero, A., Torregrosa, J.R.: Preliminary orbit determination of artificial satellites: a vectorial sixth-order approach, Abstr. Appl. Anal. (2013) (Article ID 960582)Awawdeh, F.: On new iterative method for solving systems of nonlinear equations. Numer. Algorithms 54, 395–409 (2010)Boyd, J.P.: One-point pseudospectral collocation for the one-dimensional Bratu equation. Appl. Math. Comput. 217, 5553–5565 (2011)Bratu, G.: Sur les equation integrals non-lineaires. Bull. Math. Soc. France 42, 113–142 (1914)Buckmire, R.: Applications of Mickens finite differences to several related boundary value problems. In: Mickens, R.E. (ed.) Advances in the Applications of Nonstandard Finite Difference Schemes, pp. 47–87. World Scientific Publishing, Singapore (2005)Cordero, A., Hueso, J.L., Martínez, E., Torregrosa, J.R.: A modified Newton-Jarratt’s composition. Numer. Algorithms 55, 87–99 (2010)Gelfand, I.M.: Some problems in the theory of quasi-linear equations. Trans. Am. Math. Soc. Ser. 2, 295–381 (1963)Homeier, H.H.H.: On Newton-tyoe methods with cubic convergence. J. Comput. Appl. Math. 176, 425–432 (2005)Jacobsen, J., Schmitt, K.: The Liouville-Bratu-Gelfand problem for radial operators. J. Differ. Equ. 184, 283–298 (2002)Jalilian, R.: Non-polynomial spline method for solving Bratu’s problem. Comput. Phys. Comm. 181, 1868–1872 (2010)Kanwar, V., Kumar, S., Behl, R.: Several new families of Jarratts method for solving systems of nonlinear equations. Appl. Appl. Math. 8(2), 701–716 (2013)Mohsen, A.: A simple solution of the Bratu problem. Comput. Math. with Appl. 67, 26–33 (2014)Petković, M., Neta, B., Petković, L., Džunić, J.: Multipoint Methods for Solving Nonlinear Equations. Academic Press, Amsterdam (2013)Sharma, J.R., Guna, R.K., Sharma, R.: An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 62, 307–323 (2013)Sharma, J.R., Arora, H.: On efficient weighted-Newton methods for solving systems of nonlinear equations. Appl. Math. Comput. 222, 497–506 (2013)Traub, J.F.: Iterative Methods for the Solution of Equations. Chelsea Publishing Company, New York (1982)Wan, Y.Q., Guo, Q., Pan, N.: Thermo-electro-hydrodynamic model for electrospinning process. Int. J. Nonlinear Sci. Numer. Simul. 5, 5–8 (2004

    Generalized high-order classes for solving nonlinear systems and their applications

    Get PDF
    [EN] A generalized high-order class for approximating the solution of nonlinear systems of equations is introduced. First, from a fourth-order iterative family for solving nonlinear equations, we propose an extension to nonlinear systems of equations holding the same order of convergence but replacing the Jacobian by a divided difference in the weight functions for systems. The proposed GH family of methods is designed from this fourth-order family using both the composition and the weight functions technique. The resulting family has order of convergence 9. The performance of a particular iterative method of both families is analyzed for solving different test systems and also for the Fisher's problem, showing the good performance of the new methods.This research was partially supported by both Ministerio de Ciencia, Innovacion y Universidades and Generalitat Valenciana, under grants PGC2018-095896-B-C22 (MCIU/AEI/FEDER/UE) and PROMETEO/2016/089, respectively.Chicharro, FI.; Cordero Barbero, A.; Garrido-Saez, N.; Torregrosa Sánchez, JR. (2019). Generalized high-order classes for solving nonlinear systems and their applications. Mathematics. 7(12):1-14. https://doi.org/10.3390/math7121194S114712Petković, M. S., Neta, B., Petković, L. D., & Džunić, J. (2014). Multipoint methods for solving nonlinear equations: A survey. Applied Mathematics and Computation, 226, 635-660. doi:10.1016/j.amc.2013.10.072Kung, H. T., & Traub, J. F. (1974). Optimal Order of One-Point and Multipoint Iteration. Journal of the ACM, 21(4), 643-651. doi:10.1145/321850.321860Cordero, A., Gómez, E., & Torregrosa, J. R. (2017). Efficient High-Order Iterative Methods for Solving Nonlinear Systems and Their Application on Heat Conduction Problems. Complexity, 2017, 1-11. doi:10.1155/2017/6457532Sharma, J. R., & Arora, H. (2016). Improved Newton-like methods for solving systems of nonlinear equations. SeMA Journal, 74(2), 147-163. doi:10.1007/s40324-016-0085-xAmiri, A., Cordero, A., Taghi Darvishi, M., & Torregrosa, J. R. (2018). Stability analysis of a parametric family of seventh-order iterative methods for solving nonlinear systems. Applied Mathematics and Computation, 323, 43-57. doi:10.1016/j.amc.2017.11.040Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zChicharro, F. I., Cordero, A., Garrido, N., & Torregrosa, J. R. (2019). Wide stability in a new family of optimal fourth‐order iterative methods. Computational and Mathematical Methods, 1(2), e1023. doi:10.1002/cmm4.1023FISHER, R. A. (1937). THE WAVE OF ADVANCE OF ADVANTAGEOUS GENES. Annals of Eugenics, 7(4), 355-369. doi:10.1111/j.1469-1809.1937.tb02153.xSharma, J. R., Guha, R. K., & Sharma, R. (2012). An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numerical Algorithms, 62(2), 307-323. doi:10.1007/s11075-012-9585-7Soleymani, F., Lotfi, T., & Bakhtiari, P. (2013). A multi-step class of iterative methods for nonlinear systems. Optimization Letters, 8(3), 1001-1015. doi:10.1007/s11590-013-0617-6Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.06

    Modified Potra-Pták multi-step schemes with accelerated order of convergence for solving sistems of nonlinear equations

    Full text link
    [EN] In this study, an iterative scheme of sixth order of convergence for solving systems of nonlinear equations is presented. The scheme is composed of three steps, of which the first two steps are that of third order Potra-Ptak method and last is weighted-Newton step. Furthermore, we generalize our work to derive a family of multi-step iterative methods with order of convergence 3r + 6, r = 0, 1, 2, .... The sixth order method is the special case of this multi-step scheme for r = 0. The family gives a four-step ninth order method for r = 1. As much higher order methods are not used in practice, so we study sixth and ninth order methods in detail. Numerical examples are included to confirm theoretical results and to compare the methods with some existing ones. Different numerical tests, containing academical functions and systems resulting from the discretization of boundary problems, are introduced to show the efficiency and reliability of the proposed methods.This research was partially supported by Ministerio de Economia y Competitividad under grants MTM2014-52016-C2-2-P and Generalitat Valenciana PROMETEO/2016/089.Arora, H.; Torregrosa Sánchez, JR.; Cordero Barbero, A. (2019). Modified Potra-Pták multi-step schemes with accelerated order of convergence for solving sistems of nonlinear equations. Mathematical and Computational Applications (Online). 24(1):1-15. https://doi.org/10.3390/mca24010003S115241Homeier, H. H. . (2004). A modified Newton method with cubic convergence: the multivariate case. Journal of Computational and Applied Mathematics, 169(1), 161-169. doi:10.1016/j.cam.2003.12.041Darvishi, M. T., & Barati, A. (2007). A fourth-order method from quadrature formulae to solve systems of nonlinear equations. Applied Mathematics and Computation, 188(1), 257-261. doi:10.1016/j.amc.2006.09.115Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zCordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2011). Efficient high-order methods based on golden ratio for nonlinear systems. Applied Mathematics and Computation, 217(9), 4548-4556. doi:10.1016/j.amc.2010.11.006Grau-Sánchez, M., Grau, À., & Noguera, M. (2011). On the computational efficiency index and some iterative methods for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 236(6), 1259-1266. doi:10.1016/j.cam.2011.08.008Grau-Sánchez, M., Grau, À., & Noguera, M. (2011). Ostrowski type methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 218(6), 2377-2385. doi:10.1016/j.amc.2011.08.011Grau-Sánchez, M., Noguera, M., & Amat, S. (2013). On the approximation of derivatives using divided difference operators preserving the local convergence order of iterative methods. Journal of Computational and Applied Mathematics, 237(1), 363-372. doi:10.1016/j.cam.2012.06.005Sharma, J. R., & Arora, H. (2013). On efficient weighted-Newton methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 222, 497-506. doi:10.1016/j.amc.2013.07.066Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/78015

    Stability anomalies of some jacobian-free iterative methods of high order of convergence

    Full text link
    [EN] In this manuscript, we design two classes of parametric iterative schemes to solve nonlinear problems that do not need to evaluate Jacobian matrices and need to solve three linear systems per iteration with the same divided difference operator as the coefficient matrix. The stability performance of the classes is analyzed on a quadratic polynomial system, and it is shown that for many values of the parameter, only convergence to the roots of the problem exists. Finally, we check the performance of these methods on some test problems to confirm the theoretical results.This research was partially supported by Ministerio de Economia y Competitividad under grants PGC2018-095896-B-C22, Generalitat Valenciana PROMETEO/2016/089 and FONDOCYT 027-2018 and 029-2018, Dominican Republic.Cordero Barbero, A.; García-Maimo, J.; Torregrosa Sánchez, JR.; Vassileva, MP. (2019). Stability anomalies of some jacobian-free iterative methods of high order of convergence. Axioms. 8(2):1-15. https://doi.org/10.3390/axioms8020051S11582Frontini, M., & Sormani, E. (2004). Third-order methods from quadrature formulae for solving systems of nonlinear equations. Applied Mathematics and Computation, 149(3), 771-782. doi:10.1016/s0096-3003(03)00178-4Homeier, H. H. . (2004). A modified Newton method with cubic convergence: the multivariate case. Journal of Computational and Applied Mathematics, 169(1), 161-169. doi:10.1016/j.cam.2003.12.041Aslam Noor, M., & Waseem, M. (2009). Some iterative methods for solving a system of nonlinear equations. Computers & Mathematics with Applications, 57(1), 101-106. doi:10.1016/j.camwa.2008.10.067Xiao, X., & Yin, H. (2015). A new class of methods with higher order of convergence for solving systems of nonlinear equations. Applied Mathematics and Computation, 264, 300-309. doi:10.1016/j.amc.2015.04.094Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Darvishi, M. T., & Barati, A. (2007). A third-order Newton-type method to solve systems of nonlinear equations. Applied Mathematics and Computation, 187(2), 630-635. doi:10.1016/j.amc.2006.08.080Sharma, J. R., Guha, R. K., & Sharma, R. (2012). An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numerical Algorithms, 62(2), 307-323. doi:10.1007/s11075-012-9585-7Narang, M., Bhatia, S., & Kanwar, V. (2016). New two-parameter Chebyshev–Halley-like family of fourth and sixth-order methods for systems of nonlinear equations. Applied Mathematics and Computation, 275, 394-403. doi:10.1016/j.amc.2015.11.063Behl, R., Sarría, Í., González, R., & Magreñán, Á. A. (2019). Highly efficient family of iterative methods for solving nonlinear models. Journal of Computational and Applied Mathematics, 346, 110-132. doi:10.1016/j.cam.2018.06.042Amorós, C., Argyros, I., González, R., Magreñán, Á., Orcos, L., & Sarría, Í. (2019). Study of a High Order Family: Local Convergence and Dynamics. Mathematics, 7(3), 225. doi:10.3390/math7030225Argyros, I., & González, D. (2015). Local Convergence for an Improved Jarratt-type Method in Banach Space. International Journal of Interactive Multimedia and Artificial Intelligence, 3(4), 20. doi:10.9781/ijimai.2015.344Sharma, J. R., & Gupta, P. (2014). An efficient fifth order method for solving systems of nonlinear equations. Computers & Mathematics with Applications, 67(3), 591-601. doi:10.1016/j.camwa.2013.12.004Cordero, A., Gutiérrez, J. M., Magreñán, Á. A., & Torregrosa, J. R. (2016). Stability analysis of a parametric family of iterative methods for solving nonlinear models. Applied Mathematics and Computation, 285, 26-40. doi:10.1016/j.amc.2016.03.021Cordero, A., Soleymani, F., & Torregrosa, J. R. (2014). Dynamical analysis of iterative methods for nonlinear systems or how to deal with the dimension? Applied Mathematics and Computation, 244, 398-412. doi:10.1016/j.amc.2014.07.010Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zArgyros, I., & George, S. (2015). Ball Convergence for Steffensen-type Fourth-order Methods. International Journal of Interactive Multimedia and Artificial Intelligence, 3(4), 37. doi:10.9781/ijimai.2015.347Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/78015

    Preliminary orbit determination of artificial satellites: a vectorial sixth-order approach

    Get PDF
    A modified classical method for preliminary orbit determination is presented. In our proposal, the spread of the observations is considerably wider than in the original method, as well as the order of convergence of the iterative scheme involved. The numerical approach is made by using matricial weight functions, which will lead us to a class of iterative methods with a sixth local order of convergence. This is a process widely used in the design of iterative methods for solving nonlinear scalar equations, but rarely employed in vectorial cases. The numerical tests confirm the theoretical results, and the analysis of the dynamics of the problem shows the stability of the proposed schemes.The authors thank the anonymous referees for their valuable comments and suggestions. This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-02.Andreu Estellés, C.; Cambil Teba, N.; Cordero Barbero, A.; Torregrosa Sánchez, JR. (2013). Preliminary orbit determination of artificial satellites: a vectorial sixth-order approach. Abstract and Applied Analysis. 2013. https://doi.org/10.1155/2013/960582S2013Fidkowski, K. J., Oliver, T. A., Lu, J., & Darmofal, D. L. (2005). p-Multigrid solution of high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. Journal of Computational Physics, 207(1), 92-113. doi:10.1016/j.jcp.2005.01.005Bruns, D. D., & Bailey, J. E. (1977). Nonlinear feedback control for operating a nonisothermal CSTR near an unstable steady state. Chemical Engineering Science, 32(3), 257-264. doi:10.1016/0009-2509(77)80203-0He, Y., & Ding, C. H. Q. (2001). The Journal of Supercomputing, 18(3), 259-277. doi:10.1023/a:1008153532043Revol, N., & Rouillier, F. (2005). Motivations for an Arbitrary Precision Interval Arithmetic and the MPFI Library. Reliable Computing, 11(4), 275-290. doi:10.1007/s11155-005-6891-yBabajee, D. K. R., Dauhoo, M. Z., Darvishi, M. T., & Barati, A. (2008). A note on the local convergence of iterative methods based on Adomian decomposition method and 3-node quadrature rule. Applied Mathematics and Computation, 200(1), 452-458. doi:10.1016/j.amc.2007.11.009Darvishi, M. T., & Barati, A. (2007). A third-order Newton-type method to solve systems of nonlinear equations. Applied Mathematics and Computation, 187(2), 630-635. doi:10.1016/j.amc.2006.08.080Darvishi, M. T., & Barati, A. (2007). Super cubic iterative methods to solve systems of nonlinear equations. Applied Mathematics and Computation, 188(2), 1678-1685. doi:10.1016/j.amc.2006.11.022Cordero, A., Martínez, E., & Torregrosa, J. R. (2009). Iterative methods of order four and five for systems of nonlinear equations. Journal of Computational and Applied Mathematics, 231(2), 541-551. doi:10.1016/j.cam.2009.04.015Babajee, D. K. R., Dauhoo, M. Z., Darvishi, M. T., Karami, A., & Barati, A. (2010). Analysis of two Chebyshev-like third order methods free from second derivatives for solving systems of nonlinear equations. Journal of Computational and Applied Mathematics, 233(8), 2002-2012. doi:10.1016/j.cam.2009.09.035Soleymani, F., Lotfi, T., & Bakhtiari, P. (2013). A multi-step class of iterative methods for nonlinear systems. Optimization Letters, 8(3), 1001-1015. doi:10.1007/s11590-013-0617-6Awawdeh, F. (2009). On new iterative method for solving systems of nonlinear equations. Numerical Algorithms, 54(3), 395-409. doi:10.1007/s11075-009-9342-8Babajee, D. K. R., Cordero, A., Soleymani, F., & Torregrosa, J. R. (2012). On a Novel Fourth-Order Algorithm for Solving Systems of Nonlinear Equations. Journal of Applied Mathematics, 2012, 1-12. doi:10.1155/2012/165452Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2012). Pseudocomposition: A technique to design predictor–corrector methods for systems of nonlinear equations. Applied Mathematics and Computation, 218(23), 11496-11504. doi:10.1016/j.amc.2012.04.081Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2013). Increasing the order of convergence of iterative schemes for solving nonlinear systems. Journal of Computational and Applied Mathematics, 252, 86-94. doi:10.1016/j.cam.2012.11.024Soleymani, F., & Stanimirović, P. S. (2013). A Higher Order Iterative Method for Computing the Drazin Inverse. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/708647Soleymani, F., Stanimirović, P. S., & Ullah, M. Z. (2013). An accelerated iterative method for computing weighted Moore–Penrose inverse. Applied Mathematics and Computation, 222, 365-371. doi:10.1016/j.amc.2013.07.039Sharma, J. R., Guha, R. K., & Sharma, R. (2012). An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numerical Algorithms, 62(2), 307-323. doi:10.1007/s11075-012-9585-7Sharma, J. R., & Arora, H. (2013). On efficient weighted-Newton methods for solving systems of nonlinear equations. Applied Mathematics and Computation, 222, 497-506. doi:10.1016/j.amc.2013.07.066Abad, M. F., Cordero, A., & Torregrosa, J. R. (2013). Fourth- and Fifth-Order Methods for Solving Nonlinear Systems of Equations: An Application to the Global Positioning System. Abstract and Applied Analysis, 2013, 1-10. doi:10.1155/2013/586708Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zJarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Chicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/78015

    Design of high-order iterative methods for nonlinear systems by using weight-function procedure

    Full text link
    We present two classes of iterative methods whose orders of convergence are four and five, respectively, for solving systems of nonlinear equations, by using the technique of weight functions in each step. Moreover, we show an extension to higher order, adding only one functional evaluation of the vectorial nonlinear function. We perform numerical tests to compare the proposed methods with other schemes in the literature and test their effectiveness on specific nonlinear problems. Moreover, some real basins of attraction are analyzed in order to check the relation between the order of convergence and the set of convergent starting points.Artidiello Moreno, SDJ.; Cordero Barbero, A.; Torregrosa Sánchez, JR.; Vassileva, M. (2015). Design of high-order iterative methods for nonlinear systems by using weight-function procedure. Abstract and Applied Analysis. 2015(289029):1-12. doi:10.1155/2015/289029S1122015289029He, Y., & Ding, C. H. Q. (2001). The Journal of Supercomputing, 18(3), 259-277. doi:10.1023/a:1008153532043Gerlach, J. (1994). Accelerated Convergence in Newton’s Method. SIAM Review, 36(2), 272-276. doi:10.1137/1036057Cordero, A., & Torregrosa, J. R. (2006). Variants of Newton’s method for functions of several variables. Applied Mathematics and Computation, 183(1), 199-208. doi:10.1016/j.amc.2006.05.062Cordero, A., & Torregrosa, J. R. (2007). Variants of Newton’s Method using fifth-order quadrature formulas. Applied Mathematics and Computation, 190(1), 686-698. doi:10.1016/j.amc.2007.01.062Cordero, A., & Torregrosa, J. R. (2010). On interpolation variants of Newton’s method for functions of several variables. Journal of Computational and Applied Mathematics, 234(1), 34-43. doi:10.1016/j.cam.2009.12.002Frontini, M., & Sormani, E. (2004). Third-order methods from quadrature formulae for solving systems of nonlinear equations. Applied Mathematics and Computation, 149(3), 771-782. doi:10.1016/s0096-3003(03)00178-4Cordero, A., Torregrosa, J. R., & Vassileva, M. P. (2012). Pseudocomposition: A technique to design predictor–corrector methods for systems of nonlinear equations. Applied Mathematics and Computation, 218(23), 11496-11504. doi:10.1016/j.amc.2012.04.081Jarratt, P. (1966). Some fourth order multipoint iterative methods for solving equations. Mathematics of Computation, 20(95), 434-434. doi:10.1090/s0025-5718-66-99924-8Sharma, J. R., Guha, R. K., & Sharma, R. (2012). An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numerical Algorithms, 62(2), 307-323. doi:10.1007/s11075-012-9585-7Sharma, J. R., & Gupta, P. (2014). An efficient fifth order method for solving systems of nonlinear equations. Computers & Mathematics with Applications, 67(3), 591-601. doi:10.1016/j.camwa.2013.12.004Cordero, A., Hueso, J. L., Martínez, E., & Torregrosa, J. R. (2009). A modified Newton-Jarratt’s composition. Numerical Algorithms, 55(1), 87-99. doi:10.1007/s11075-009-9359-zChicharro, F. I., Cordero, A., & Torregrosa, J. R. (2013). Drawing Dynamical and Parameters Planes of Iterative Families and Methods. The Scientific World Journal, 2013, 1-11. doi:10.1155/2013/78015

    A new fourth-order family for solving nonlinear problems and its dynamics

    Full text link
    In this manuscript, a new parametric class of iterative methods for solving nonlinear systems of equations is proposed. Its fourth-order of convergence is proved and a dynamical analysis on low-degree polynomials is made in order to choose those elements of the family with better conditions of stability. These results are checked by solving the nonlinear system that arises from the partial differential equation of molecular interaction.This research was supported by Ministerio de Ciencia y Tecnologia MTM2011-28636-C02-{01, 02} and Universitat Politecnica de Valencia SP20120474.Cordero Barbero, A.; Feng, L.; Magrenan, A.; Torregrosa Sánchez, JR. (2015). A new fourth-order family for solving nonlinear problems and its dynamics. Journal of Mathematical Chemistry. 53(3):893-910. https://doi.org/10.1007/s10910-014-0464-4S893910533R.C. Rach, J.S. Duan, A.M. Wazwaz, Solving coupled Lane–Emden boundary value problems in catalytic diffusion reactions by the Adomian decomposition method. J. Math. Chem. 52(1), 255–267 (2014)R. Singh, G. Nelakanti, J. Kumar, A new efficient technique for solving two-point boundary value problems for integro-differential equations. J. Math. Chem. doi: 10.1007/s10910-014-0363-8M. Mahalakshmi, G. Hariharan, K. Kannan, The wavelet methods to linear and nonlineal reaction–diffusion model arising in mathematical chemistry. J. Math. Chem. 51, 2361–2385 (2013)P.G. Logrado, J.D.M. Vianna, Partitioning technique procedure revisited: formalism and first application to atomic problems. J. Math. Chem. 22, 107–116 (1997)C.G. Jesudason, I. Numerical nonlinear analysis: differential methods and optimization applied to chemical reaction rate determination. J. Math. Chem. 49, 1384–1415 (2011)A. Klamt, Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 99, 2224–2235 (1995)A. Klamt, V. Jonas, T. Brger, J.C.W. Lohrenz, Refinement and parametrization of COSMORS. J. Phys. Chem. A 102, 5074–5085 (1998)H. Grensemann, J. Gmehling, Performance of a conductor-like screening model for real solvents model in comparison to classical group contribution methods. Ind. Eng. Chem. Res. 44(5), 1610–1624 (2005)T. Banerjee, A. Khanna, Infinite dilution activity coefficients for trihexyltetradecyl phosphonium ionic liquids: measurements and COSMO-RS prediction. J. Chem. Eng. Data 51(6), 2170–2177 (2006)R. Franke, B. Hannebauer, On the influence of basis sets and quantum chemical methods on the prediction accuracy of COSMO-RS. Phys. Chem. Chem. Phys. 13, 21344–21350 (2011)K. Maleknejad, M. Alizadeh, An efficient numerical scheme for solving Hammerstein integral equation arisen in chemical phenomenon. Proc. Comput. Sci. 3, 361–364 (2011)M. Petković, B. Neta, L. Petković, J. Džunić, Multipoint Methods for Solving Nonlinear Equations (Academic Press, Amsterdam, 2012)A. Cordero, J.R. Torregrosa, Variants of Newton’s method using fifth-order quadrature formulas. Appl. Math. Comput. 190, 686–698 (2007)H.T. Kung, J.F. Traub, Optimal order of one-point and multi-point iterations. J. Assoc. Comput. Math. 21, 643–651 (1974)A.M. Ostrowski, Solution of Equations and Systems of Equations (Prentice-Hall, Englewood Cliffs, 1964)P. Jarratt, Some fourth order multipoint iterative methods for solving equations. Math. Comput. 20, 434–437 (1966)R.F. King, A family of fourth order methods for nonlinear equations. SIAM J. Numer. Anal. 10, 876–879 (1973)A. Cordero, J.L. Hueso, E. Martínez, J.R. Torregrosa, A modified Newton Jarratt’s composition. Numer. Algorithms 55, 87–99 (2010)S. Amat, S. Busquier, Á.A. Magreñán, Reducing Chaos and Bifurcations in Newton-Type Methods. Abstract and Applied Analysis Volume 2013 (2013), Article ID 726701, 10 pages, doi: 10.1155/2013/726701S. Amat, S. Busquier, S. Plaza, Review of some iterative root-finding methods from a dynamical point of view. Sci. Ser. A Math. Sci. 10, 3–35 (2004)F. Chicharro, A. Cordero, J.M. Gutiérrez, J.R. Torregrosa, Complex dynamics of derivative-free methods for nonlinear equations. Appl. Math. Comput. 219, 7023–7035 (2013)C. Chun, M.Y. Lee, B. Neta, J. Džunić, On optimal fourth-order iterative methods free from second derivative and their dynamics. Appl. Math. Comput. 218, 6427–6438 (2012)Á.A. Magreñán, Different anomalies in a Jarratt family of iterative root-finding methods. Appl. Math. Comput. 233, 29–38 (2014)A. Cordero, J.R. Torregrosa, P. Vindel, Dynamics of a family of Chebyshev–Halley type methods. Appl. Math. Comput. 219, 8568–8583 (2013)Á. A. Magreñán, Estudio de la dinámica del método de Newton amortiguado (PhD Thesis). Servicio de Publicaciones, Universidad de La Rioja, (2013). http://dialnet.unirioja.es/servlet/tesis?codigo=38821P. Blanchard, The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)F. Chicharro, A. Cordero, J.R. Torregrosa, Drawing dynamical and parameters planes of iterative families and methods. The Scientific World J. 2013 (Article ID 780153) (2013)L.B. Rall, Computational Solution of Nonlinear Operator Equations (Robert E. Krieger Publishing Company Inc., New York, 1969)J.R. Sharma, R.K. Guna, R. Sharma, An efficient fourth order weighted-Newton method for systems of nonlinear equations. Numer. Algorithms 62, 307–323 (2013
    corecore