422 research outputs found

    Online Incremental Machine Translation

    Get PDF
    In this thesis we investigate the automatic improvements of statistical machine translation systems at runtime based on user feedback. We also propose a framework to use the proposed algorithms in large scale translation settings

    Information reuse in dynamic spectrum access

    Get PDF
    Dynamic spectrum access (DSA), where the permission to use slices of radio spectrum is dynamically shifted (in time an in different geographical areas) across various communications services and applications, has been an area of interest from technical and public policy perspectives over the last decade. The underlying belief is that this will increase spectrum utilization, especially since many spectrum bands are relatively unused, ultimately leading to the creation of new and innovative services that exploit the increase in spectrum availability. Determining whether a slice of spectrum, allocated or licensed to a primary user, is available for use by a secondary user at a certain time and in a certain geographic area is a challenging task. This requires 'context information' which is critical to the operation of DSA. Such context information can be obtained in several ways, with different costs, and different quality/usefulness of the information. In this paper, we describe the challenges in obtaining this context information, the potential for the integration of various sources of context information, and the potential for reuse of such information for related and unrelated purposes such as localization and enforcement of spectrum sharing. Since some of the infrastructure for obtaining finegrained context information is likely to be expensive, the reuse of this infrastructure/information and integration of information from less expensive sources are likely to be essential for the economical and technological viability of DSA. © 2013 IEEE

    Wi-Fi Finger-Printing Based Indoor Localization Using Nano-Scale Unmanned Aerial Vehicles

    Get PDF
    Explosive growth in the number of mobile devices like smartphones, tablets, and smartwatches has escalated the demand for localization-based services, spurring development of numerous indoor localization techniques. Especially, widespread deployment of wireless LANs prompted ever increasing interests in WiFi-based indoor localization mechanisms. However, a critical shortcoming of such localization schemes is the intensive time and labor requirements for collecting and building the WiFi fingerprinting database, especially when the system needs to cover a large space. In this thesis, we propose to automate the WiFi fingerprint survey process using a group of nano-scale unmanned aerial vehicles (NAVs). The proposed system significantly reduces the efforts for collecting WiFi fingerprints. Furthermore, since these NAVs explore a 3D space, the WiFi fingerprints of a 3D space can be obtained increasing the localization accuracy. The proposed system is implemented on a commercially available miniature open-source quadcopter platform by integrating a contemporary WiFi - fingerprint - based localization system. Experimental results demonstrate that the localization error is about 2m, which exhibits only about 20cm of accuracy degradation compared with the manual WiFi fingerprint survey methods

    Adaptive indoor positioning system based on locating globally deployed WiFi signal sources

    Get PDF
    Recent trends in data driven applications have encouraged expanding location awareness to indoors. Various attributes driven by location data indoors require large scale deployment that could expand beyond specific venue to a city, country or even global coverage. Social media, assets or personnel tracking, marketing or advertising are examples of applications that heavily utilise location attributes. Various solutions suggest triangulation between WiFi access points to obtain location attribution indoors imitating the GPS accurate estimation through satellites constellations. However, locating signal sources deep indoors introduces various challenges that cannot be addressed via the traditional war-driving or war-walking methods. This research sets out to address the problem of locating WiFi signal sources deep indoors in unsupervised deployment, without previous training or calibration. To achieve this, we developed a grid approach to mitigate for none line of site (NLoS) conditions by clustering signal readings into multi-hypothesis Gaussians distributions. We have also employed hypothesis testing classification to estimate signal attenuation through unknown layouts to remove dependencies on indoor maps availability. Furthermore, we introduced novel methods for locating signal sources deep indoors and presented the concept of WiFi access point (WAP) temporal profiles as an adaptive radio-map with global coverage. Nevertheless, the primary contribution of this research appears in utilisation of data streaming, creation and maintenance of self-organising networks of WAPs through an adaptive deployment of mass-spring relaxation algorithm. In addition, complementary database utilisation components such as error estimation, position estimation and expanding to 3D have been discussed. To justify the outcome of this research, we present results for testing the proposed system on large scale dataset covering various indoor environments in different parts of the world. Finally, we propose scalable indoor positioning system based on received signal strength (RSSI) measurements of WiFi access points to resolve the indoor positioning challenge. To enable the adoption of the proposed solution to global scale, we deployed a piece of software on multitude of smartphone devices to collect data occasionally without the context of venue, environment or custom hardware. To conclude, this thesis provides learning for novel adaptive crowd-sourcing system that automatically deals with tolerance of imprecise data when locating signal sources
    corecore