78 research outputs found

    Providing Dynamic TXOP for QoS Support of Video Transmission in IEEE 802.11e WLANs

    Get PDF
    The IEEE 802.11e standard introduced by IEEE 802.11 Task Group E (TGe) enhances the Quality of Service (QoS) by means of HCF Controlled Channel Access (HCCA). The scheduler of HCCA allocates Transmission Opportunities (TXOPs) to QoS-enabled Station (QSTA) based on their TS Specifications (TSPECs) negotiated at the traffic setup time so that it is only efficient for Constant Bit Rate (CBR) applications. However, Variable Bit Rate (VBR) traffics are not efficiently supported as they exhibit nondeterministic profile during the time. In this paper, we present a dynamic TXOP assignment Scheduling Algorithm for supporting the video traffics transmission over IEEE 802.11e wireless networks. This algorithm uses a piggybacked information about the size of the subsequent video frames of the uplink traffic to assist the Hybrid Coordinator accurately assign the TXOP according to the fast changes in the VBR profile. The proposed scheduling algorithm has been evaluated using simulation with different variability level video streams. The simulation results show that the proposed algorithm reduces the delay experienced by VBR traffic streams comparable to HCCA scheduler due to the accurate assignment of the TXOP which preserve the channel time for transmission.Comment: arXiv admin note: substantial text overlap with arXiv:1602.0369

    Improving the QoS support in HCCA-EDCA mixed IEEE 802.11e networks

    Get PDF
    The multimedia applications require the network to provide a trustworthy service suitable to meet their Quality of Service and real-time requirements, managing efficiently the available resources. In this paper we present a performing solution for the multimedia support over IEEE 802.11e networks that aims to combine both its Medium Access Control functions, Enhanced Distributed Channel Access (EDCA) and Hybrid Coordination Function (HCF) Controlled Channel Access (HCCA), in order to reduce the experienced delay. The proposed scheduler, local to the node, cooperates with the centralized HCCA scheduler, integrating the offered service using the EDCA available resources. The simulations show that the overall scheduler improves the performance with respect to the HCCA schedulers in terms of scheduling efficiency and delay, allowing to guarantee the expected service level

    An improved medium access control protocol for real-time applications in WLANs and its firmware development

    Get PDF
    The IEEE 802.11 Wireless Local Area Network (WLAN), commonly known as Wi-Fi, has emerged as a popular internet access technology and researchers are continuously working on improvement of the quality of service (QoS) in WLAN by proposing new and efficient schemes. Voice and video over Internet Protocol (VVoIP) applications are becoming very popular in Wi-Fi enabled portable/handheld devices because of recent technological advancements and lower service costs. Different from normal voice and video streaming, these applications demand symmetric throughput for the upstream and downstream. Existing Wi-Fi standards are optimised for generic internet applications and fail to provide symmetric throughput due to traffic bottleneck at access points. Performance analysis and benchmarking is an integral part of WLAN research, and in the majority of the cases, this is done through computer simulation using popular network simulators such as Network Simulator ff 2 (NS-2) or OPNET. While computer simulation is an excellent approach for saving time and money, results generated from computer simulations do not always match practical observations. This is why, for proper assessment of the merits of a proposed system in WLAN, a trial on a practical hardware platform is highly recommended and is often a requirement. In this thesis work, with a view to address the abovementioned challenges for facilitating VoIP and VVoIP services over Wi-Fi, two key contributions are made: i) formulating a suitable medium access control (MAC) protocol to address symmetric traffic scenario and ii) firmware development of this newly devised MAC protocol for real WLAN hardware. The proposed solution shows signifocant improvements over existing standards by supporting higher number of stations with strict QoS criteria. The proposed hardware platform is available off-the-shelf in the market and is a cost effective way of generating and evaluating performance results on a hardware system

    Improving the QoS of IEEE 802.11e networks through imprecise computation

    Get PDF
    IEEE 802.11e HCCA reference scheduler is based on fixed value parameters that do not adapt to traffic changes, thus quality of service (QoS) for multimedia applications is a challenge, especially in the case of variable bit rate (VBR) streams, that requires dynamic resource assignment. This paper is focused on immediate dynamic TXOP HCCA (IDTH) scheduling algorithm and its new evolution immediate dynamic TXOP HCCA plus (IDTH+). Their reclaiming mechanisms, refined by the monitoring of transmission duration, aim at overcoming the limits of fixed preallocation of resources by varying the stations transmission time and avoiding waste of resources. Simulations and theoretical analysis based on the imprecise computation model show that the integration of IDTH and IDTH+ can achieve improved network performance in terms of transmission queues length, mean access delay and packets drop rate, and to efficiently manage bursty traffic. Moreover, the performance improvements of IDTH+ with respect to IDTH are highlighted

    Elastic QoS Scheduling with Step-by-Step Propagation in IEEE 802.11e Networks with Multimedia Traffic

    Get PDF
    The spreading diffusion of wireless devices and the crowded coexistence of multimedia applications greedy of bandwidth and with strict requirements stress the service provisioning offered by wireless technologies. WiFi is a reference for wireless connectivity and it requires a continuous evolution of its mechanism in order to follow increasingly demanding service needs. In particular, despite the evolution of physical layer, some critical contexts, such as industrial networks, telemedicine, telerehabilitation, and virtual training, require further refined improvements in order to ensure the respect of strict real-time service requirements. In this paper an in-depth analysis of Dynamic TXOP HCCA (DTH) MAC enhanced centralized scheduler is illustrated and it is further refined introducing a new improvement, DTH with threshold. DTH and DTH with threshold can be integrated with preexisting centralized schedulers in order to improve their performances, without any overprovisioning that can negatively impact on the admission control feasibility test. Indeed, without modifying the centralized scheduler policy, they combine together the concepts of reclaiming transmission time and statistical estimation of the traffic profile in order to provide, at each polling, an instantaneous transmission time tailored to the variable traffic requirements, increasing, when necessary, the service data rate. These mechanisms can coexist with advanced physical layer-based solutions, providing the required service differentiation. Experimental results and theoretical analysis, based on elastic scheduler theory, show that they are effective especially in the case of Variable Bit Rate traffic streams in terms of transmission queues length, packets loss, delay, and throughput

    Quality of service provision in mobile multimedia - a survey

    Full text link
    corecore