5 research outputs found

    An energy-efficient and secure data inference framework for internet of health things: A pilot study

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. Privacy protection in electronic healthcare applications is an important consideration, due to the sensitive nature of personal health data. Internet of Health Things (IoHT) networks that are used within a healthcare setting have unique challenges and security requirements (integrity, authentication, privacy, and availability) that must also be balanced with the need to maintain efficiency in order to conserve battery power, which can be a significant limitation in IoHT devices and networks. Data are usually transferred without undergoing filtering or optimization, and this traffic can overload sensors and cause rapid battery consumption when interacting with IoHT networks. This poses certain restrictions on the practical implementation of these devices. In order to address these issues, this paper proposes a privacy-preserving two-tier data inference framework solution that conserves battery consumption by inferring the sensed data and reducing data size for transmission, while also protecting sensitive data from leakage to adversaries. The results from experimental evaluations on efficiency and privacy show the validity of the proposed scheme, as well as significant data savings without compromising data transmission accuracy, which contributes to energy efficiency of IoHT sensor devices

    Towards interoperable e-Health system in Tanzania: analysis and evaluation of the current security trends and big data sharing dynamics

    Get PDF
    This research article published by the International Journal of Advanced Technology and Engineering Exploration (IJATEE), Volume-6 Issue-59 October-2019In this paper an insight on various e-health interoperable systems was reviewed to discover strengths and challenges faced during sustainable implementation. It covered local, national and regional coverage of integrated systems towards implementation of a single unified e-health system. Peer reviewed and grey literatures were consulted to discover global and local trend and efforts towards implementations of e-health interoperable systems. The available systems and frameworks from the European Union, Asia, America, Oceania and Africa were analyzed for their strengths and challenges. Various policies, guides as well as free and proprietary standards associated with e-health interoperability was reviewed to understand the common standards adopted by the majority of existing systems. The findings of the analysis are useful for policy makers on the best ways to implement interoperable systems in developing countries by focusing on the existing infrastructures and the environment. Similarly, the strengths and challenges encountered by interoperable systems were also examined to provide recommendations for future studies

    Mobile Network and Cloud Based Privacy-Preserving Data Aggregation and Processing

    Get PDF
    The emerging technology of mobile devices and cloud computing has brought a new and efficient way for data to be collected, processed and stored by mobile users. With improved specifications of mobile devices and various mobile applications provided by cloud servers, mobile users can enjoy tremendous advantages to manage their daily life through those applications instantaneously, conveniently and productively. However, using such applications may lead to the exposure of user data to unauthorised access when the data is outsourced for processing and storing purposes. Furthermore, such a setting raises the privacy breach and security issue to mobile users. As a result, mobile users would be reluctant to accept those applications without any guarantee on the safety of their data. The recent breakthrough of Fully Homomorphic Encryption (FHE) has brought a new solution for data processing in a secure motion. Several variants and improvements on the existing methods have been developed due to efficiency problems. Experience of such problems has led us to explore two areas of studies, Mobile Sensing Systems (MSS) and Mobile Cloud Computing (MCC). In MSS, the functionality of smartphones has been extended to sense and aggregate surrounding data for processing by an Aggregation Server (AS) that may be operated by a Cloud Service Provider (CSP). On the other hand, MCC allows resource-constraint devices like smartphones to fully leverage services provided by powerful and massive servers of CSPs for data processing. To support the above two application scenarios, this thesis proposes two novel schemes: an Accountable Privacy-preserving Data Aggregation (APDA) scheme and a Lightweight Homomorphic Encryption (LHE) scheme. MSS is a kind of WSNs, which implements a data aggregation approach for saving the battery lifetime of mobile devices. Furthermore, such an approach could improve the security of the outsourced data by mixing the data prior to be transmitted to an AS, so as to prevent the collusion between mobile users and the AS (or its CSP). The exposure of users’ data to other mobile users leads to a privacy breach and existing methods on preserving users’ privacy only provide an integrity check on the aggregated data without being able to identify any misbehaved nodes once the integrity check has failed. Thus, to overcome such problems, our first scheme APDA is proposed to efficiently preserve privacy and support accountability of mobile users during the data aggregation. Furthermore, APDA is designed with three versions to provide balanced solutions in terms of misbehaved node detection and data aggregation efficiency for different application scenarios. In addition, the successfully aggregated data also needs to be accompanied by some summary information based on necessary additive and non-additive functions. To preserve the privacy of mobile users, such summary could be executed by implementing existing privacy-preserving data aggregation techniques. Nevertheless, those techniques have limitations in terms of applicability, efficiency and functionality. Thus, our APDA has been extended to allow maximal value finding to be computed on the ciphertext data so as to preserve user privacy with good efficiency. Furthermore, such a solution could also be developed for other comparative operations like Average, Percentile and Histogram. Three versions of Maximal value finding (Max) are introduced and analysed in order to differentiate their efficiency and capability to determine the maximum value in a privacy-preserving manner. Moreover, the formal security proof and extensive performance evaluation of our proposed schemes demonstrate that APDA and its extended version can achieve stronger security with an optimised efficiency advantage over the state-of-the-art in terms of both computational and communication overheads. In the MCC environment, the new LHE scheme is proposed with a significant difference so as to allow arbitrary functions to be executed on ciphertext data. Such a scheme will enable rich-mobile applications provided by CSPs to be leveraged by resource-constraint devices in a privacy-preserving manner. The scheme works well as long as noise (a random number attached to the plaintext for security reasons) is less than the encryption key, which makes it flexible. The flexibility of the key size enables the scheme to incorporate with any computation functions in order to produce an accurate result. In addition, this scheme encrypts integers rather than individual bits so as to improve the scheme’s efficiency. With a proposed process that allows three or more parties to communicate securely, this scheme is suited to the MCC environment due to its lightweight property and strong security. Furthermore, the efficacy and efficiency of this scheme are thoroughly evaluated and compared with other schemes. The result shows that this scheme can achieve stronger security under a reasonable cost

    Securing clouds using cryptography and traffic classification

    Get PDF
    Cloud computing is a model for enabling ubiquitous, convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort or service provider interaction. Over the last decade, cloud computing has gained popularity and wide acceptance, especially within the health sector where it offers several advantages such as low costs, flexible processes, and access from anywhere. Although cloud computing is widely used in the health sector, numerous issues remain unresolved. Several studies have attempted to review the state of the art in eHealth cloud privacy and security however, some of these studies are outdated or do not cover certain vital features of cloud security and privacy such as access control, revocation and data recovery plans. This study targets some of these problems and proposes protocols, algorithms and approaches to enhance the security and privacy of cloud computing with particular reference to eHealth clouds. Chapter 2 presents an overview and evaluation of the state of the art in eHealth security and privacy. Chapter 3 introduces different research methods and describes the research design methodology and processes used to carry out the research objectives. Of particular importance are authenticated key exchange and block cipher modes. In Chapter 4, a three-party password-based authenticated key exchange (TPAKE) protocol is presented and its security analysed. The proposed TPAKE protocol shares no plaintext data; all data shared between the parties are either hashed or encrypted. Using the random oracle model (ROM), the security of the proposed TPAKE protocol is formally proven based on the computational Diffie-Hellman (CDH) assumption. Furthermore, the analysis included in this chapter shows that the proposed protocol can ensure perfect forward secrecy and resist many kinds of common attacks such as man-in-the-middle attacks, online and offline dictionary attacks, replay attacks and known key attacks. Chapter 5 proposes a parallel block cipher (PBC) mode in which blocks of cipher are processed in parallel. The results of speed performance tests for this PBC mode in various settings are presented and compared with the standard CBC mode. Compared to the CBC mode, the PBC mode is shown to give execution time savings of 60%. Furthermore, in addition to encryption based on AES 128, the hash value of the data file can be utilised to provide an integrity check. As a result, the PBC mode has a better speed performance while retaining the confidentiality and security provided by the CBC mode. Chapter 6 applies TPAKE and PBC to eHealth clouds. Related work on security, privacy preservation and disaster recovery are reviewed. Next, two approaches focusing on security preservation and privacy preservation, and a disaster recovery plan are proposed. The security preservation approach is a robust means of ensuring the security and integrity of electronic health records and is based on the PBC mode, while the privacy preservation approach is an efficient authentication method which protects the privacy of personal health records and is based on the TPAKE protocol. A discussion about how these integrated approaches and the disaster recovery plan can ensure the reliability and security of cloud projects follows. Distributed denial of service (DDoS) attacks are the second most common cybercrime attacks after information theft. The timely detection and prevention of such attacks in cloud projects are therefore vital, especially for eHealth clouds. Chapter 7 presents a new classification system for detecting and preventing DDoS TCP flood attacks (CS_DDoS) for public clouds, particularly in an eHealth cloud environment. The proposed CS_DDoS system offers a solution for securing stored records by classifying incoming packets and making a decision based on these classification results. During the detection phase, CS_DDOS identifies and determines whether a packet is normal or from an attacker. During the prevention phase, packets classified as malicious are denied access to the cloud service, and the source IP is blacklisted. The performance of the CS_DDoS system is compared using four different classifiers: a least-squares support vector machine (LS-SVM), naïve Bayes, K-nearest-neighbour, and multilayer perceptron. The results show that CS_DDoS yields the best performance when the LS-SVM classifier is used. This combination can detect DDoS TCP flood attacks with an accuracy of approximately 97% and a Kappa coefficient of 0.89 when under attack from a single source, and 94% accuracy and a Kappa coefficient of 0.9 when under attack from multiple attackers. These results are then discussed in terms of the accuracy and time complexity, and are validated using a k-fold cross-validation model. Finally, a method to mitigate DoS attacks in the cloud and reduce excessive energy consumption through managing and limiting certain flows of packets is proposed. Instead of a system shutdown, the proposed method ensures the availability of service. The proposed method manages the incoming packets more effectively by dropping packets from the most frequent requesting sources. This method can process 98.4% of the accepted packets during an attack. Practicality and effectiveness are essential requirements of methods for preserving the privacy and security of data in clouds. The proposed methods successfully secure cloud projects and ensure the availability of services in an efficient way
    corecore