2,056 research outputs found

    Secure and Privacy-Preserving Data Aggregation Protocols for Wireless Sensor Networks

    Get PDF
    This chapter discusses the need of security and privacy protection mechanisms in aggregation protocols used in wireless sensor networks (WSN). It presents a comprehensive state of the art discussion on the various privacy protection mechanisms used in WSNs and particularly focuses on the CPDA protocols proposed by He et al. (INFOCOM 2007). It identifies a security vulnerability in the CPDA protocol and proposes a mechanism to plug that vulnerability. To demonstrate the need of security in aggregation process, the chapter further presents various threats in WSN aggregation mechanisms. A large number of existing protocols for secure aggregation in WSN are discussed briefly and a protocol is proposed for secure aggregation which can detect false data injected by malicious nodes in a WSN. The performance of the protocol is also presented. The chapter concludes while highlighting some future directions of research in secure data aggregation in WSNs.Comment: 32 pages, 7 figures, 3 table

    A Survey on Wireless Sensor Network Security

    Full text link
    Wireless sensor networks (WSNs) have recently attracted a lot of interest in the research community due their wide range of applications. Due to distributed nature of these networks and their deployment in remote areas, these networks are vulnerable to numerous security threats that can adversely affect their proper functioning. This problem is more critical if the network is deployed for some mission-critical applications such as in a tactical battlefield. Random failure of nodes is also very likely in real-life deployment scenarios. Due to resource constraints in the sensor nodes, traditional security mechanisms with large overhead of computation and communication are infeasible in WSNs. Security in sensor networks is, therefore, a particularly challenging task. This paper discusses the current state of the art in security mechanisms for WSNs. Various types of attacks are discussed and their countermeasures presented. A brief discussion on the future direction of research in WSN security is also included.Comment: 24 pages, 4 figures, 2 table

    Energy efficient security and privacy management in sensor clouds

    Get PDF
    Sensor Cloud is a new model of computing for Wireless Sensor Networks, which facilitates resource sharing and enables large scale sensor networks. A multi-user distributed system, however, where resources are shared, has inherent challenges in security and privacy. The data being generated by the wireless sensors in a sensor cloud need to be protected against adversaries, which may be outsiders as well as insiders. Similarly the code which is disseminated to the sensors by the sensor cloud needs to be protected against inside and outside adversaries. Moreover, since the wireless sensors cannot support complex, energy intensive measures, the security and privacy of the data and the code have to be attained by way of lightweight algorithms. In this work, we first present two data aggregation algorithms, one based on an Elliptic Curve Cryptosystem (ECC) and the other based on symmetric key system, which provide confidentiality and integrity of data against an outside adversary and privacy against an in network adversary. A fine grained access control scheme which works on the securely aggregated data is presented next. This scheme uses Attribute Based Encryption (ABE) to achieve this objective. Finally, to securely and efficiently disseminate code in the sensor cloud, we present a code dissemination algorithm which first reduces the amount of code to be transmitted from the base station. It then uses Symmetric Proxy Re-encryption along with Bloom filters and HMACs to protect the code against eavesdropping and false code injection attacks. --Abstract, page iv

    Secure data aggregation in wireless sensor networks: A survey

    Get PDF
    Data aggregation is a widely used technique in wireless sensor networks. The security issues, data confidentiality and integrity, in data aggregation become vital when the sensor network is deployed in a hostile environment. There has been many related work proposed to address these security issues. In this paper we survey these work and classify them into two cases: hop-by-hop encrypted data aggregation and end-to-end encrypted data aggregation. We also propose two general frameworks for the two cases respectively. The framework for end-to-end encrypted data aggregation has higher computation cost on the sensor nodes, but achieves stronger security, in comparison with the framework for hop-by-hop encrypted data aggregation.Yingpeng Sang, Hong Shen, Yasushi Inoguchi, Yasuo Tan, Naixue Xion

    SPECTRA: Secure Power Efficient Clustered Topology Routing Algorithm

    Get PDF
    Wireless Sensor Networks (WSNs) have emerged as one of the hottest fields today due to their low-cost, self-organizing behavior, sensing ability in harsh environments, and their large application scope. One of the most challenging topics in WSNs is security. In some applications it is critical to provide confidentiality and authentication in order to prevent information from being compromised. However, providing key management for confidentiality and authentication is difficult due to the ad hoc nature, intermittent connectivity, and resource limitations of the network. Though traditional public keybased security protocols do exist, they need large memory bandwidths and complex algorithms, and are thus unsuitable for WSNs. Current solutions to the security issue in WSNs were created with only authentication and confidentiality in mind. This is far from optimal, because routing and security are closely correlated. Routing and security are alike because similar steps are taken in order to achieve these functions within a given network. Therefore, security and routing can be combined together in a cross-layer design, reducing the consumption of resources. The focus of this work is on the integration of routing and key management to provide an energy efficient security and routing solution. Towards this goal, this work proposes a security protocol that encompasses the following features: integration of security and routing, dynamic security, robust re-keying, low-complexity, and dual levels of encryption. This work combines all the robust features of current security implementations while adding additional features like dual layer encryption, resulting in an extremely efficient security protocol

    AMISEC: Leveraging Redundancy and Adaptability to Secure AmI Applications

    Get PDF
    Security in Ambient Intelligence (AmI) poses too many challenges due to the inherently insecure nature of wireless sensor nodes. However, there are two characteristics of these environments that can be used effectively to prevent, detect, and confine attacks: redundancy and continuous adaptation. In this article we propose a global strategy and a system architecture to cope with security issues in AmI applications at different levels. Unlike in previous approaches, we assume an individual wireless node is vulnerable. We present an agent-based architecture with supporting services that is proven to be adequate to detect and confine common attacks. Decisions at different levels are supported by a trust-based framework with good and bad reputation feedback while maintaining resistance to bad-mouthing attacks. We also propose a set of services that can be used to handle identification, authentication, and authorization in intelligent ambients. The resulting approach takes into account practical issues, such as resource limitation, bandwidth optimization, and scalability
    corecore