6,634 research outputs found

    TAR channel access mechanism for VANET safety-critical situations

    Get PDF
    International audienceVehicular Ad-hoc Network (VANET) is among the most relevant forms of mobile ad-hoc networks. VANET helps improving traffic safety and efficiency. By exchanging information between each others, vehicles can warn drivers or even prepare for dangerous situation. These warnings can be about critical situations like vehicles merging in a highway. Detecting and warning about such situations require a reliable communication between vehicles increasing thus the need for an efficient medium access control (MAC) protocol. In this paper, we propose to apply Transmit And Reserve (TAR), an ad-hoc medium access protocol, to vehicular communications. We integrated TAR into NS-3 simulator and evaluated its performance compared to IEEE 802.11 DCF in a vehicular network context. The evaluation results show that TAR is an efficient medium access protocol for VANET critical situations as it increases the throughput reduces the medium access delays and provides close to optimal short term fairness

    Link-Layer Cooperative Communication in Vehicular Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) are a special kind of communication networks and possess unique characteristics as compared with general mobile ad hoc networks (MANETs), where vehicles communicate with each other or with stationary road side units. Hence, directly applying the existing communication protocols designed for MANETs may not be reliable and efficient in VANETs. Thus, this thesis presents link-layer cooperative frameworks to improve transmission reliability and network throughput over distributed TDMA MAC protocols for VANETs. We present a link-layer node cooperation scheme for VANETs, referred to as Cooperative ADHOC MAC (CAH-MAC). In CAH-MAC, neighboring nodes cooperate to utilize unused time slots to retransmit failed packets. Throughput improvement is achieved by using idle time slots that are wasted in the absence of node cooperation. In addition, as a packet is retransmitted earlier by a relay node, transmission delay and packet dropping rate are reduced. We study the effects of a dynamic networking environment on the performance of CAH-MAC. It is observed that, system performance degrades due to cooperation collisions. To tackle this challenge, we present an enhanced CAH-MAC (eCAH-MAC) scheme. In eCAH-MAC, using different types of packet and by delaying or suspending some relay transmissions, cooperation collisions can be avoided and cooperation opportunities can be efficiently utilize without disrupting the normal operations of the distributed TDMA MAC. We propose a node cooperation based makeup strategy for vehicular networks, referred to as cooperative relay broadcasting (CRB), such that neighboring nodes proactively rebroadcast the packet from a source node. An optimization framework is developed to provide an upper bound on the CRB performance with accurate channel information. Further, we propose a channel prediction scheme based on a two-state first-order Markov chain, to select the best relaying node for CRB. As packets are repeatedly broadcasted by the neighboring nodes before they expire, the proposed CRB framework provides a more reliable broadcast service as compared with existing approaches. The proposed node cooperation frameworks enhance the performance of distributed TDMA MAC and make it more robust to tackle VANET's dynamic networking conditions

    Routing And Communication Path Mapping In VANETS

    Get PDF
    Vehicular ad-hoc network (VANET) has quickly become an important aspect of the intelligent transport system (ITS), which is a combination of information technology, and transport works to improve efficiency and safety through data gathering and dissemination. However, transmitting data over an ad-hoc network comes with several issues such as broadcast storms, hidden terminal problems and unreliability; these greatly reduce the efficiency of the network and hence the purpose for which it was developed. We therefore propose a system of utilising information gathered externally from the node or through the various layers of the network into the access layer of the ETSI communication stack for routing to improve the overall efficiency of data delivery, reduce hidden terminals and increase reliability. We divide route into segments and design a set of metric system to select a controlling node as well as procedure for data transfer. Furthermore we propose a system for faster data delivery based on priority of data and density of nodes from route information while developing a map to show the communication situation of an area. These metrics and algorithms will be simulated in further research using the NS-3 environment to demonstrate the effectiveness

    A Centralized TDMA based Scheduling Algorithm for Real-Time Communications in Vehicular Ad Hoc Networks

    Get PDF
    International audience—As wireless technologies inside smart cars are increasing , Vehicular Ad hoc NETworks (VANETs) are becoming a promising way to enhance driver and passenger safety by enabling each vehicle to provide a warning in real time when a critical event is predicted. These applications require reliable broadcast schemes with minimum access delay and transmission collisions, which thus increase the need for an efficient Medium Access Control (MAC) protocol. However, the design of an efficient MAC protocol in VANET networks is a challenging task due to the high speed of the nodes, the frequent changes in network topology and various QoS requirements. Motivated by this observation, in this paper we present a Centralized TDMA based MAC protocol named CTMAC for real-time communications in VANETs. In our solution, Road Side Units (RSUs) are used as central coordinators to schedule and maintain time slot assignment for the vehicles in their coverage areas. In this work, we will show how interference between vehicles in the overlapping regions can be avoided without using any complex spectrum mechanisms such as CDMA or OFDMA. The simulation results reveal that CTMAC significantly outperforms the VeMAC and ADHOC MAC protocols. in terms of transmission collisions and the overhead required to create and maintain the TDMA schedules

    Computational Intelligence Inspired Data Delivery for Vehicle-to-Roadside Communications

    Get PDF
    We propose a vehicle-to-roadside communication protocol based on distributed clustering where a coalitional game approach is used to stimulate the vehicles to join a cluster, and a fuzzy logic algorithm is employed to generate stable clusters by considering multiple metrics of vehicle velocity, moving pattern, and signal qualities between vehicles. A reinforcement learning algorithm with game theory based reward allocation is employed to guide each vehicle to select the route that can maximize the whole network performance. The protocol is integrated with a multi-hop data delivery virtualization scheme that works on the top of the transport layer and provides high performance for multi-hop end-to-end data transmissions. We conduct realistic computer simulations to show the performance advantage of the protocol over other approaches
    • 

    corecore