15,475 research outputs found

    MetTeL: A Generic Tableau Prover.

    Get PDF

    Decomposition of sequential and concurrent models

    Get PDF
    Le macchine a stati finiti (FSM), sistemi di transizioni (TS) e le reti di Petri (PN) sono importanti modelli formali per la progettazione di sistemi. Un problema fodamentale è la conversione da un modello all'altro. Questa tesi esplora il mondo delle reti di Petri e della decomposizione di sistemi di transizioni. Per quanto riguarda la decomposizione dei sistemi di transizioni, la teoria delle regioni rappresenta la colonna portante dell'intero processo di decomposizione, mirato soprattutto a decomposizioni che utilizzano due sottoclassi delle reti di Petri: macchine a stati e reti di Petri a scelta libera. Nella tesi si dimostra che una proprietà chiamata ``chiusura rispetto all'eccitazione" (excitation-closure) è sufficiente per produrre un insieme di reti di Petri la cui sincronizzazione è bisimile al sistema di transizioni (o rete di Petri di partenza, se la decomposizione parte da una rete di Petri), dimostrando costruttivamente l'esistenza di una bisimulazione. Inoltre, è stato implementato un software che esegue la decomposizione dei sistemi di transizioni, per rafforzare i risultati teorici con dati sperimentali sistematici. Nella seconda parte della dissertazione si analizza un nuovo modello chiamato MSFSM, che rappresenta un insieme di FSM sincronizzate da due primitive specifiche (Wait State - Stato d'Attesa e Transition Barrier - Barriera di Transizione). Tale modello trova un utilizzo significativo nella sintesi di circuiti sincroni a partire da reti di Petri a scelta libera. In particolare vengono identificati degli errori nell'approccio originale, fornendo delle correzioni.Finite State Machines (FSMs), transition systems (TSs) and Petri nets (PNs) are important models of computation ubiquitous in formal methods for modeling systems. Important problems involve the transition from one model to another. This thesis explores Petri nets, transition systems and Finite State Machines decomposition and optimization. The first part addresses decomposition of transition systems and Petri nets, based on the theory of regions, representing them by means of restricted PNs, e.g., State Machines (SMs) and Free-choice Petri nets (FCPNs). We show that the property called ``excitation-closure" is sufficient to produce a set of synchronized Petri nets bisimilar to the original transition system or to the initial Petri net (if the decomposition starts from a PN), proving by construction the existence of a bisimulation. Furthermore, we implemented a software performing the decomposition of transition systems, and reported extensive experiments. The second part of the dissertation discusses Multiple Synchronized Finite State Machines (MSFSMs) specifying a set of FSMs synchronized by specific primitives: Wait State and Transition Barrier. It introduces a method for converting Petri nets into synchronous circuits using MSFSM, identifies errors in the initial approach, and provides corrections

    One machine, one minute, three billion tetrahedra

    Full text link
    This paper presents a new scalable parallelization scheme to generate the 3D Delaunay triangulation of a given set of points. Our first contribution is an efficient serial implementation of the incremental Delaunay insertion algorithm. A simple dedicated data structure, an efficient sorting of the points and the optimization of the insertion algorithm have permitted to accelerate reference implementations by a factor three. Our second contribution is a multi-threaded version of the Delaunay kernel that is able to concurrently insert vertices. Moore curve coordinates are used to partition the point set, avoiding heavy synchronization overheads. Conflicts are managed by modifying the partitions with a simple rescaling of the space-filling curve. The performances of our implementation have been measured on three different processors, an Intel core-i7, an Intel Xeon Phi and an AMD EPYC, on which we have been able to compute 3 billion tetrahedra in 53 seconds. This corresponds to a generation rate of over 55 million tetrahedra per second. We finally show how this very efficient parallel Delaunay triangulation can be integrated in a Delaunay refinement mesh generator which takes as input the triangulated surface boundary of the volume to mesh
    • …
    corecore