353 research outputs found

    A Combined Equaliser and Decoder for Maximum Likelihood Decoding of Convolutional Codes in the presence of ISI. Incorporation into GSM 3GPP Standard

    Get PDF
    The dissertation describes a new approach in combining the equalising and decoding operations in wireless telecommunications, namely MS decoder. It provides performance results (SNR) and carries out simulations based on GSM 3GPP standard

    Sequential decoding of trellis codes through ISI channels

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (leaves 56-57).by Patrick M. Maurer.M.S

    Improving the Spectral Efficiency of Nonlinear Satellite Systems through Time-Frequency Packing and Advanced Processing

    Full text link
    We consider realistic satellite communications systems for broadband and broadcasting applications, based on frequency-division-multiplexed linear modulations, where spectral efficiency is one of the main figures of merit. For these systems, we investigate their ultimate performance limits by using a framework to compute the spectral efficiency when suboptimal receivers are adopted and evaluating the performance improvements that can be obtained through the adoption of the time-frequency packing technique. Our analysis reveals that introducing controlled interference can significantly increase the efficiency of these systems. Moreover, if a receiver which is able to account for the interference and the nonlinear impairments is adopted, rather than a classical predistorter at the transmitter coupled with a simpler receiver, the benefits in terms of spectral efficiency can be even larger. Finally, we consider practical coded schemes and show the potential advantages of the optimized signaling formats when combined with iterative detection/decoding.Comment: 8 pages, 8 figure

    Reduced Receivers for Faster-than-Nyquist Signaling and General Linear Channels

    Get PDF
    Fast and reliable data transmission together with high bandwidth efficiency are important design aspects in a modern digital communication system. Many different approaches exist but in this thesis bandwidth efficiency is obtained by increasing the data transmission rate with the faster-than-Nyquist (FTN) framework while keeping a fixed power spectral density (PSD). In FTN consecutive information carrying symbols can overlap in time and in that way introduce a controlled amount of intentional intersymbol interference (ISI). This technique was introduced already in 1975 by Mazo and has since then been extended in many directions. Since the ISI stemming from practical FTN signaling can be of significant duration, optimum detection with traditional methods is often prohibitively complex, and alternative equalization methods with acceptable complexity-performance tradeoffs are needed. The key objective of this thesis is therefore to design reduced-complexity receivers for FTN and general linear channels that achieve optimal or near-optimal performance. Although the performance of a detector can be measured by several means, this thesis is restricted to bit error rate (BER) and mutual information results. FTN signaling is applied in two ways: As a separate uncoded narrowband communication system or in a coded scenario consisting of a convolutional encoder, interleaver and the inner ISI mechanism in serial concatenation. Turbo equalization where soft information in the form of log likelihood ratios (LLRs) is exchanged between the equalizer and the decoder is a commonly used decoding technique for coded FTN signals. The first part of the thesis considers receivers and arising stability problems when working within the white noise constraint. New M-BCJR algorithms for turbo equalization are proposed and compared to reduced-trellis VA and BCJR benchmarks based on an offset label idea. By adding a third low-complexity M-BCJR recursion, LLR quality is improved for practical values of M. M here measures the reduced number of BCJR computations for each data symbol. An improvement of the minimum phase conversion that sharpens the focus of the ISI model energy is proposed. When combined with a delayed and slightly mismatched receiver, the decoding allows a smaller M without significant loss in BER. The second part analyzes the effect of the internal metric calculations on the performance of Forney- and Ungerboeck-based reduced-complexity equalizers of the M-algorithm type for both ISI and multiple-input multiple-output (MIMO) channels. Even though the final output of a full-complexity equalizer is identical for both models, the internal metric calculations are in general different. Hence, suboptimum methods need not produce the same final output. Additionally, new models working in between the two extremes are proposed and evaluated. Note that the choice of observation model does not impact the detection complexity as the underlying algorithm is unaltered. The last part of the thesis is devoted to a different complexity reducing approach. Optimal channel shortening detectors for linear channels are optimized from an information theoretical perspective. The achievable information rates of the shortened models as well as closed form expressions for all components of the optimal detector of the class are derived. The framework used in this thesis is more general than what has been previously used within the area

    Advanced transceivers for spectrally-efficient communications

    Get PDF
    In this thesis, we will consider techniques to improve the spectral efficiency of digital communication systems, operating on the whole transceiver scheme. First, we will focus on receiver schemes having detection algorithms with a complexity constraint. We will optimize the parameters of the reduced detector with the aim of maximizing the achievable information rate. Namely, we will adopt the channel shortening technique. Then, we will focus on a technique that is getting very popular in the last years (although presented for the first time in 1975): faster-than-Nyquist signaling, and its extension which is time packing. Time packing is a very simple technique that consists in introducing intersymbol interference on purpose with the aim of increasing the spectral efficiency of finite order constellations. Finally, in the last chapters we will combine all the presented techniques, and we will consider their application to satellite channels.Comment: PhD Thesi
    corecore