288 research outputs found

    On applying the set covering model to reseeding

    Get PDF
    The Functional BIST approach is a rather new BIST technique based on exploiting embedded system functionality to generate deterministic test patterns during BIST. The approach takes advantages of two well-known testing techniques, the arithmetic BIST approach and the reseeding method. The main contribution of the present paper consists in formulating the problem of an optimal reseeding computation as an instance of the set covering problem. The proposed approach guarantees high flexibility, is applicable to different functional modules, and, in general, provides a more efficient test set encoding then previous techniques. In addition, the approach shorts the computation time and allows to better exploiting the tradeoff between area overhead and global test length as well as to deal with larger circuits

    FPGA ARCHITECTURE AND VERIFICATION OF BUILT IN SELF-TEST (BIST) FOR 32-BIT ADDER/SUBTRACTER USING DE0-NANO FPGA AND ANALOG DISCOVERY 2 HARDWARE

    Get PDF
    The integrated circuit (IC) is an integral part of everyday modern technology, and its application is very attractive to hardware and software design engineers because of its versatility, integration, power consumption, cost, and board area reduction. IC is available in various types such as Field Programming Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), System on Chip (SoC) architecture, Digital Signal Processing (DSP), microcontrollers (μC), and many more. With technology demand focused on faster, low power consumption, efficient IC application, design engineers are facing tremendous challenges in developing and testing integrated circuits that guaranty functionality, high fault coverage, and reliability as the transistor technology is shrinking to the point where manufacturing defects of ICs are affecting yield which associates with the increased cost of the part. The competitive IC market is pressuring manufactures of ICs to develop and market IC in a relatively quick turnaround which in return requires design and verification engineers to develop an integrated self-test structure that would ensure fault-free and the quality product is delivered on the market. 70-80% of IC design is spent on verification and testing to ensure high quality and reliability for the enduser. To test complex and sophisticated IC designs, the verification engineers must produce laborious and costly test fixtures which affect the cost of the part on the competitive market. To avoid increasing the part cost due to yield and test time to the end-user and to keep up with the competitive market many IC design engineers are deviating from complex external test fixture approach and are focusing on integrating Built-in Self-Test (BIST) or Design for Test (DFT) techniques onto IC’s which would reduce time to market but still guarantee high coverage for the product. Understanding the BIST, the architecture, as well as the application of IC, must be understood before developing IC. The architecture of FPGA is elaborated in this paper followed by several BIST techniques and applications of those BIST relative to FPGA, SoC, analog to digital (ADC), or digital to analog converters (DAC) that are integrated on IC. Paper is concluded with verification of BIST for the 32-bit adder/subtracter designed in Quartus II software using the Analog Discovery 2 module as stimulus and DE0-NANO FPGA board for verification

    Design a Low Power Built in Self-Test (BIST) Architecture for Fast Multiplier and Optimize in Terms of Real Time Functionality

    Get PDF
    Aiming low power during testing, Maypresent a methodology for derivingBIST Architecture forfast Multipliers. In my propose Researchseveral design rules for designing the Wallace tree in order to be fully testable under the cell fault model. The proposed low power BISTArchitecture for the derived multipliers is achieved by: (i) IntroducingTest Pattern Generators (ii) Properly assigning the TPGsoutputs to the multiplier inputs and(iii) Significantly reducing the test vector length. In this work, I have implemented 4bit * 4bit Multiplier with many test pattern generators (TPG) alternative. A BIST TPG Architecture was use of 6 bit counter. I have calculated operation speed, time delay, area, power consumption for Design. Reductionof power dissipationachieved byproperly assigning the TPG output to the multiplier input,significantly reducing the test set length, suitableTPG built of a6-bit counter DOI: 10.17762/ijritcc2321-8169.150317

    Design of a Scan Chain for Side Channel Attacks on AES Cryptosystem for Improved Security

    Get PDF
    Scan chain-based attacks are side-channel attacks focusing on one of the most significant features of hardware test circuitry. A technique called Design for Testability (DfT) involves integrating certain testability components into a hardware design. However, this creates a side channel for cryptanalysis, providing crypto devices vulnerable to scan-based attacks. Advanced Encryption Standard (AES) has been proven as the most powerful and secure symmetric encryption algorithm announced by USA Government and it outperforms all other existing cryptographic algorithms. Furthermore, the on-chip implementation of private key algorithms like AES has faced scan-based side-channel attacks. With the aim of protecting the data for secure communication, a new hybrid pipelined AES algorithm with enhanced security features is implemented. This paper proposes testing an AES core with unpredictable response compaction and bit level-masking throughout the scan chain process. A bit-level scan flipflop focused on masking as a scan protection solution for secure testing. The experimental results show that the best security is provided by the randomized addition of masked scan flipflop through the scan chain and also provides minimal design difficulty and power expansion overhead with some negligible delay measures. Thus, the proposed technique outperforms the state-of-the-art LUT-based S-box and the composite sub-byte transformation model regarding throughput rate 2 times and 15 times respectively. And security measured in the avalanche effect for the sub-pipelined model has been increased up to 95 per cent with reduced computational complexity. Also, the proposed sub-pipelined S-box utilizing a composite field arithmetic scheme achieves 7 per cent area effectiveness and 2.5 times the hardware complexity compared to the LUT-based model

    Agent Based Test and Repair of Distributed Systems

    Get PDF
    This article demonstrates how to use intelligent agents for testing and repairing a distributed system, whose elements may or may not have embedded BIST (Built-In Self-Test) and BISR (Built-In Self-Repair) facilities. Agents are software modules that perform monitoring, diagnosis and repair of the faults. They form together a society whose members communicate, set goals and solve tasks. An experimental solution is presented, and future developments of the proposed approach are explore

    Delay Measurements and Self Characterisation on FPGAs

    No full text
    This thesis examines new timing measurement methods for self delay characterisation of Field-Programmable Gate Arrays (FPGAs) components and delay measurement of complex circuits on FPGAs. Two novel measurement techniques based on analysis of a circuit's output failure rate and transition probability is proposed for accurate, precise and efficient measurement of propagation delays. The transition probability based method is especially attractive, since it requires no modifications in the circuit-under-test and requires little hardware resources, making it an ideal method for physical delay analysis of FPGA circuits. The relentless advancements in process technology has led to smaller and denser transistors in integrated circuits. While FPGA users benefit from this in terms of increased hardware resources for more complex designs, the actual productivity with FPGA in terms of timing performance (operating frequency, latency and throughput) has lagged behind the potential improvements from the improved technology due to delay variability in FPGA components and the inaccuracy of timing models used in FPGA timing analysis. The ability to measure delay of any arbitrary circuit on FPGA offers many opportunities for on-chip characterisation and physical timing analysis, allowing delay variability to be accurately tracked and variation-aware optimisations to be developed, reducing the productivity gap observed in today's FPGA designs. The measurement techniques are developed into complete self measurement and characterisation platforms in this thesis, demonstrating their practical uses in actual FPGA hardware for cross-chip delay characterisation and accurate delay measurement of both complex combinatorial and sequential circuits, further reinforcing their positions in solving the delay variability problem in FPGAs

    Self-Testing Analog Spiking Neuron Circuit

    Get PDF
    International audienceHardware-implemented neural networks are foreseen to play an increasing role in numerous applications. In this paper, we address the problem of post-manufacturing test and self-test of hardware-implemented neural networks. In particular, we propose a self-testable version of a spiking neuron circuit. The self-test wrapper is a compact circuit composed of a low-precision ramp generator and a small digital block. The self-test principle is demonstrated on a spiking neuron circuit design in 0.35Âľm CMOS technology

    Design of a 1.9 GHz low-power LFSR circuit using the Reed-Solomon algorithm for Pseudo-Random Test Pattern Generation

    Get PDF
    A linear feedback shift register (LFSR) has been frequently used in the Built-in Self-Test (BIST) designs for the pseudo-random test pattern generation. The volume of the test patterns and test power dissipation are the key features in the large complex designs. The objective of this paper is to propose a new LFSR circuit based on the proposed Reed-Solomon (RS) algorithm. The RS algorithm is created by considering the factors of the maximum length test pattern with a minimum distance over the time. Also, it has achieved an effective generation of test patterns over a stage of complexity order O (m log2 m), where m denotes the total number of message bits. We analyzed our RS LFSR mathematically using the feedback polynomial function for an area-sensitive design. However, the bit-wise stages of the proposed RS LFSR are simulated using the TSMC 130 nm IC design tool in the Mentor Graphics platform. Experimental results showed that the proposed LFSR achieved the effective pseudo-random test patterns with a low-test power dissipation (25.13 µW). Ultimately, the circuit has operated in the highest operating frequency (1.9 GHz) environment.   &nbsp

    DESIGN FOR TESTABILITY TECHNIQUES FOR VIDEO CODING SYSTEMS

    Get PDF
    Motion estimation algorithms are used in various video coding systems. While focusing on the testing of ME in a video coding system, this work presents an error detection and data recovery (EDDR) design, based on the residue-andquotient (RQ) code, to embed into ME for video coding testing applications. An error in processing elements (PEs), i.e. key components of a ME, can be detected and recovered effectively by using the proposed EDDR design. Therefore, paper describes a novel testing scheme of motion estimation. The key part of this scheme is to offer high reliability for motion estimation architecture. The experimental result shows the design achieve 100% fault coverage. And, the main advantages of this scheme are minimal performance degradation, small cost of hardware overhead and the benefit of at speed testing

    Reliable and Fault-Resilient Schemes for Efficient Radix-4 Complex Division

    Get PDF
    Complex division is commonly used in various applications in signal processing and control theory including astronomy and nonlinear RF measurements. Nevertheless, unless reliability and assurance are embedded into the architectures of such structures, the suboptimal (and thus erroneous) results could undermine the objectives of such applications. As such, in this thesis, we present schemes to provide complex number division architectures based on (Sweeney, Robertson, and Tocher) SRT-division with fault diagnosis mechanisms. Different fault resilient architectures are proposed in this thesis which can be tailored based on the eventual objectives of the designs in terms of area and time requirements, among which we pinpoint carefully the schemes based on recomputing with shifted operands (RESO) to be able to detect both natural and malicious faults and with proper modification achieve high throughputs. The design also implements a minimized look up table approach which favors in error detection based designs and provides high fault coverage with relatively-low overhead. Additionally, to benchmark the effectiveness of the proposed schemes, extensive fault diagnosis assessments are performed for the proposed designs through fault simulations and FPGA implementations; the design is implemented on Xilinx Spartan-VI and Xilinx Virtex-VI FPGA families
    • …
    corecore