5 research outputs found

    Estimation of object location probability for object detection using brightness feature only

    Get PDF
    Most existing object detection methods use features such as color, shape, and contour. If there are no consistent features can be used, we need a new object detection method. Therefore, in this paper, we propose a new method for estimating the probability that an object can be located for object detection and generating an object location probability map using only brightness in a gray image. To evaluate the performance of the proposed method, we applied it to gallbladder detection. Experimental results showed 98.02% success rate for gallbladder detection in ultrasonogram. Therefore, the proposed method accurately estimates the object location probability and effectively detected gallbladder

    Color Reduction in Hand-drawn Persian Carpet Cartoons before Discretization using image segmentation and finding edgy regions

    Get PDF
    In this paper, we present a method for color reduction of Persian carpet cartoons that increases both speed and accuracy of editing. Carpet cartoons are in two categories: machine-printed and hand-drawn. Hand-drawn cartoons are divided into two groups: before and after discretization. The purpose of this study is color reduction of hand-drawn cartoons before discretization. The proposed algorithm consists of the following steps: image segmentation, finding the color of each region, color reduction around the edges and final color reduction with C-means. The proposed method requires knowing the desired number of colors in any cartoon. In this method, the number of colors is not reduced to more than about 1.3 times of the desired number. Automatic color reduction is done in such a way that final manual editing to reach the desired colors is very easy

    Efficient, edge-aware, combined color quantization and dithering

    Get PDF
    Abstract—In this paper we present a novel algorithm to simultaneously accomplish color quantization and dithering of images. This is achieved by minimizing a perception-based cost function which considers pixel-wise differences between filtered versions of the quantized image and the input image. We use edge aware filters in defining the cost function to avoid mixing colors on opposite sides of an edge. The importance of each pixel is weighted according to its saliency. To rapidly minimize the cost function, we use a modified multi-scale iterative conditional mode (ICM) algorithm which updates one pixel a time while keeping other pixels unchanged. As ICM is a local method, careful initialization is required to prevent termination at a local minimum far from the global one. To address this problem, we initialize ICM with a palette generated by a modified median-cut method. Compared to previous approaches, our method can produce high quality results with fewer visual artifacts but also requires significantly less computational effort. Index Terms—Color quantization, dithering, optimization-based image processing. I

    Multiobjective Image Color Quantization Algorithm Based on Self-Adaptive Hybrid Differential Evolution

    Get PDF
    In recent years, some researchers considered image color quantization as a single-objective problem and applied heuristic algorithms to solve it. This paper establishes a multiobjective image color quantization model with intracluster distance and intercluster separation as its objectives. Inspired by a multipopulation idea, a multiobjective image color quantization algorithm based on self-adaptive hybrid differential evolution (MoDE-CIQ) is then proposed to solve this model. Two numerical experiments on four common test images are conducted to analyze the effectiveness and competitiveness of the multiobjective model and the proposed algorithm
    corecore