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In recent years, some researchers considered image color quantization as a single-objective problem and applied heuristic
algorithms to solve it. This paper establishes a multiobjective image color quantization model with intracluster distance and
intercluster separation as its objectives. Inspired by a multipopulation idea, a multiobjective image color quantization algorithm
based on self-adaptive hybrid differential evolution (MoDE-CIQ) is then proposed to solve this model. Two numerical experiments
on four common test images are conducted to analyze the effectiveness and competitiveness of the multiobjective model and the
proposed algorithm.

1. Introduction

Image color quantization is one of the common image pro-
cessing techniques. It is the process of reducing the number of
colors presented in a color imagewith less distortion [1].Most
of the image color quantizationmethods [2–12] are essentially
based on data clustering algorithms. Recently, some heuristic
methods, such as genetic algorithm (GA) [13, 14], particle
swarmoptimization algorithm (PSO) [15–17], and differential
evolution (DE) [18–21], have been employed to solve the
image color quantization problems which are considered
as optimization problems. Evaluation criteria, which are
used as objective functions of optimization problems, often
incorporate mean square-error (MSE) [22–24], intracluster
distance (𝑑max), and intercluster separation (𝑑min) [25–28].

Most of the image color quantization algorithms based
on heuristic methods are single-objective methods; that is,
only one evaluation criterion is used. References [26–28] have
used three evaluation criteria, but their three criteria have
been merged to get a linear weighting objective function. In
general, the objective function in any of the above algorithms
holds only one evaluation criterion or a linear combination of

several evaluation criteria. This paper presents the following
two aspects:

(i) Developmultiobjectivemodel for image color quantiza-
tion problems. Based on the model, we can obtain
a quantized image with the smallest color distortion
among those imageswhichmeet a trade-off between the
optimal color gradation and the optimal color details.

(ii) Propose a multiobjective algorithm based on a self-
adaptive DE for solving the multiobjective image
color quantization model.

The rest of the paper is organized as follows. Section 2
establishes a multiobjective image color quantization model.
Section 3 presents a multiobjective image color quantization
algorithm based on self-adaptive hybrid DE (MoDE-CIQ).
Experimental results and discussion on four test images are
provided in Section 4. Conclusions are given in Section 5.

2. Establishment of a Multiobjective Image
Color Quantization Model

2.1. Multiobjective Image Color Quantization Model. In
single-objective models, mean square-error (MSE) (1) is the
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most popular evaluation criterion for color image quantiza-
tion [29]. Intracluster distance (𝑑max) (2) and intercluster sep-
aration (𝑑min) (3) come next in importance to MSE. Smaller
MSE means smaller color distortion. Smaller 𝑑max means
smoother gradation of similar colors. Larger 𝑑min means
more color details to be preserved. The three evaluation
criteria are expressed in the following formulas [28]:

MSE =
1

𝑀 ×𝑁
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Here,𝑀 × 𝑁 is the size of a color image 𝐼. 𝐼(⋅, ⋅) is a pixel in
𝐼.𝐾 is a given color number of a colormap. 𝑘 is the sequence
number of the colors in the colormap. 𝑐

𝑘
is the 𝑘th color of

the colormap. 𝑘
1
and 𝑘

2
are two different sequence numbers

of the colors in the colormap. 𝐶
𝑘
is the cluster of all pixels in

𝐼 with similar color to 𝑐
𝑘
. |𝐶
𝑘
| is the number of all pixels in

𝐶
𝑘
. 𝐼
𝑝
is the color of a pixel in 𝐶

𝑘
. 𝑑(⋅, ⋅) represents Euclidean

distance.
This paper proposes a multiobjective image color quan-

tization model which uses two evaluation criteria, 𝑑max
and 𝑑min, as its subobjective functions. The model can be
formulized as follows:

minimize 𝐹 (𝑥) = (𝑔
1 (𝑥) , 𝑔2 (𝑥))

𝑇

s.t. 𝑥 ∈ [0, 255]
3×𝐾

.

(4)

Here [0, 255]
3×𝐾 is decision space. Decision vector 𝑥 is a

colormap consisting of 𝐾 randomly selected color triples in
the color space [0, 255]3. Let
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be the 𝑘th color of the colormap. Then
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𝐹(𝑥) is the objective function with the following two subob-
jectives:

𝑔
1 (𝑥) = 𝑑max,

𝑔
2 (𝑥) = 255 − 𝑑min.

(7)

This model aims to make a trade-off between 𝑑max
minimum and 𝑑min maximum. The solution set of this
multiobjective model is called Pareto set, the solutions of
which could balance color gradation and color details.

Obviously, the solution with the smallest MSE in the
Pareto set of the above multiobjective model corresponds to
a quantized image, which holds the smallest color distortion
among those imageswith a balance between the optimal color
gradation and the optimal color details.

2.2. Conflict Detection of the Subobjective Functions. As we
all know, the subobjective functions of a multiobjective
model should be conflicting.Thismeans, as two subobjectives
in the above model, 𝑔

1
(𝑥) and 𝑔

2
(𝑥) should not become

better simultaneously. Namely, when 𝑑max becomes better
(smaller), 𝑑min should not also become better (larger). In
this part, several experiments are conducted to show that the
subobjective functions, 𝑔

1
(𝑥) and 𝑔

2
(𝑥), in the above model

are obviously conflicting.
Figure 1 shows four common test images (Peppers,

Baboon, Lena, and Airplane) with size 512 × 512 pixels. Ref-
erence [15] presented a color image quantization algorithm
based on self-adaptive hybrid DE (SaDE-CIQ), in which
the objective function is MSE. We, respectively, replace its
objective with𝑑max and𝑑min to obtain two algorithms, named
SaDE-CIQ1 and SaDE-CIQ2. SaDE-CIQ, SaDE-CIQ1, and
SaDE-CIQ2 are implemented to quantize all test images into
the quantized images with 16 colors. Each algorithm is run
10 times on each test image. In the three algorithms, there
are two parameters, a maximum iteration 𝑡max and a mixed
probability 𝑝. Here, 𝑡max = 200. For showing the same
relation of MSE, 𝑑max and 𝑑min for the different values of 𝑝,
we let 𝑝 take three different values, 0.1, 0.05, and 0.01 in the
three algorithms.

For the three algorithms with different 𝑝, we can get the
similar relation of MSE, 𝑑max and 𝑑min. So, we only use the
part results of SaDE-CIQ1 with 𝑝 = 0.1 as an example to
analyze the relation of MSE, 𝑑max and 𝑑min. By any image and
its quantized image, we can calculate the values of MSE, 𝑑max
and 𝑑min. Table 1 gives all the objective values 𝑑max of SaDE-
CIQ1 in 10 runs and the corresponding values of MSE and
𝑑min. Figure 2 shows the changes of these values in 10 runs.
We include the curves of Peppers from first run to second
run as an example of how to illustrate the conflicts of MSE,
𝑑max and 𝑑min. When 𝑑max becomes better (smaller), 𝑑min
does not become better (larger). When MSE becomes better
(smaller), 𝑑min does not become better (larger). When 𝑑max
becomes better (smaller), MSE also becomes better (smaller).
These mean 𝑑max and 𝑑min are conflicting, MSE and 𝑑min are
conflicting, and 𝑑max andMSE are not conflicting. According
to the statistical analysis for all test images, there are 15
conflicts between 𝑑max and 𝑑min, 16 between MSE and 𝑑min,
and 11 between 𝑑max andMSE.These statistical data show that
any two of MSE, 𝑑max and 𝑑min, are in conflict.

In summary, for the conflict of 𝑑max and 𝑑min, it is
appropriate to select them as the subobjective functions in
the above multiobjective image color model. Meanwhile, for
the conflicts of MSE with 𝑑max and 𝑑min, there does not exist
preference when MSE is applied to select the solution in the
Pareto set of the above multiobjective model.
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Table 1: The results of 10 runs for SaDE-CIQ1 (𝑝 = 0.1).

Test image Test serial number
1 2 3 4 5 6 7 8 9 10

Peppers
𝑑max 27.8885 26.9858 26.0681 28.1934 25.7472 32.8054 26.8729 32.0317 25.5597 28.0979
𝑑min 41.5508 29.3541 25.0297 37.4886 40.54 33.6902 35.1127 36.4135 38.3825 36.1761
MSE 26.8221 26.2667 25.1661 26.8304 25.5318 31.5104 24.1938 29.6623 23.7019 27.8777

Baboon
𝑑max 26.6224 27.6260 28.3537 26.8452 26.6689 30.5386 27.6907 28.4376 26.8122 28.7434
𝑑min 36.2255 32.8375 34.9105 24.7064 36.5621 30.9652 26.8745 25.9984 33.4011 38.2255
MSE 20.3766 20.8404 20.1511 19.6093 20.9290 19.4481 21.6021 20.2362 19.4163 20.5033

Lena
𝑑max 27.2745 34.0579 28.5068 26.6540 26.6780 37.2558 12.6332 34.9201 28.0219 33.1166
𝑑min 21.9009 36.3725 33.3204 37.1832 37.1524 26.1205 37.3509 28.9622 24.5176 29.3508
MSE 8.3868 15.5077 28.0535 5.6724 15.9792 40.6224 9.5826 38.4419 17.6261 13.4949

Airplane
𝑑max 21.9009 36.3725 33.3204 37.1832 37.1524 26.1205 37.3509 28.9622 24.5176 29.3508
𝑑min 8.3868 15.5077 28.0535 5.6724 15.9792 40.6224 9.5826 38.4419 17.6261 13.4949
MSE 15.5626 25.9173 26.8238 22.2865 26.5673 20.2143 29.551 25.9917 21.0685 24.9274

(a) Peppers (b) Baboon

(c) Lena (d) Airplane

Figure 1: Test images.
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Figure 2: The curves of 𝑑max, 𝑑min, and MSE obtained by SaDE-CIQ1 (𝑝 = 0.1).

3. Multiobjective Image Color
Quantization Algorithm Based on
Self-Adaptive Hybrid DE

For solving the above multiobjective image color quanti-
zation model, this section proposes a multiobjective image
color quantization algorithm based on self-adaptive hybrid
DE (MoDE-CIQ). This algorithm merges the ideas of SaDE-
CIQ in [19] and a multipopulation DE algorithm VEDE
[30], which is a Pareto-based multiobjective DE algorithm.
The main steps of the proposed MoDE-CIQ algorithm are
described as below.

Step 1 (initialize populations). Two initial populations
including NP individuals are randomly selected separately.
Here, each individual is a colormap with 𝐾 colors from an
image 𝐼. The initial populations are denoted by

𝑋
1
= {𝑥
1
, 𝑥
2
, . . . , 𝑥NP} ,

𝑋
2
= {𝑥NP+1, 𝑥NP+2, . . . , 𝑥2∗NP} .

(8)

Step 2 (optimize populations). The population𝑋
1
is updated

by SaDE-CIQ with 𝑔
1
(𝑥) as its objective. The population 𝑋

2

is updated by SaDE-CIQ with 𝑔
2
(𝑥) as its objective. Then,

the best individuals of the two populations are exchanged.
The update and exchange operations are repeated to achieve
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Input color image 𝐼;
Set parameters 𝐾, NP, 𝑡max, 𝑝, 𝐿𝑜𝑜𝑝,𝐷 = 3 × 𝐾;
Initialize two populations𝑋

1
[NP][𝐷],𝑋

2
[NP][𝐷];

Initialize Pareto-optimal solutions set POS[2 ∗NP][𝐷] = {0}, and all individuals in POS are set to
be enough large initial values of MSE;
for 𝐼 = 0 to 𝐿𝑜𝑜𝑝 − 1
{for 𝑡 = 0 to (𝑡max − 1)

{ Update the first population𝑋
1
by SaDE-CIQ (the pseudo-code is shown in [15]) with 𝑔

1
(𝑥)

as its objective;
Update the second population𝑋

2
by SaDE-CIQ with 𝑔

2
(𝑥) as its objective;

Exchange the best solutions of the two populations;
}

for 𝑖 = 0 to NP − 1
{ If𝑋

1
[𝑖] is a non-dominated solution and its MSE value is less than POS[𝑖],
then POS[𝑖] = 𝑋

1
[𝑖];

If𝑋
2
[𝑖] is a non-dominated solution and its MSE value is less than POS[𝑖 + NP],

then POS[𝑖 +NP]= 𝑋
2
[𝑖];

}

}

Output all the nonzero individuals in Pareto-optimal solutions set POS[𝑖], their values of MSE, the
quantized image 𝐼󸀠 with the smallest value of MSE.

Pseudocode 1: The pseudocode of MoDE-CIQ.

Table 2: The MSE values resulting from SaDE-CIQ, 𝐾-means, and PSO-CIQ.

Alg. Peppers Baboon Lena Airplane
Min Max Min Max Min Max Min Max

SaDE-CIQ 17.4682 18.7266 22.7496 23.3382 12.9709 13.8055 8.2482 8.9740
𝐾-means 18.1086 21.2676 22.9532 24.9563 15.6401 19.1314 9.1141 10.4430
PSO-CIQ 36.3436 40.9532 35.8892 41.9940 29.6644 34.5867 21.3540 24.3200

a predetermined iteration number 𝑡max. The set of 𝑡maxth
generation individuals of the two populations is denoted by

𝑋 = {𝑥
𝑡max
1

, 𝑥
𝑡max
2

, . . . , 𝑥
𝑡max
NP , 𝑥
𝑡max
NP+1, 𝑥

𝑡max
NP+2, . . . , 𝑥

𝑡max
2∗NP} . (9)

Step 3 (reserve nondominated solutions). All nondominated
solutions in𝑋 are recorded in a set POS.

(Note: for an individual𝑥𝑡max
𝑖

(𝑖 = 1, 2, . . . , 2∗NP), if there
is no another one 𝑥𝑡max

𝑗
(𝑗 ̸= 𝑖, 𝑗 = 1, 2, . . . , 2 ∗ NP) such

that 𝑔
1
(𝑥
𝑡max
𝑗

) < 𝑔
1
(𝑥
𝑡max
𝑖

) and 𝑔
2
( 𝑥
𝑡max
𝑗

) < 𝑔
2
(𝑥
𝑡max
𝑖

), that is,
𝐹(𝑥
𝑡max
𝑗

) ≺ 𝐹(𝑥
𝑡max
𝑖

), it is a nondominated solution. Otherwise,
it is a dominated solution.)

Step 4 (obtain an approximative Pareto solution set). Steps 2
and 3 are repeated to achieve a predetermined iteration num-
ber Loop. The final set POS is recorded as an approximative
Pareto solution set.

Step 5 (determine an optimal solution). In the set POS, the
solution with the smallest values of MSE is finally reserved as
an optimal solution of an image color quantization problem.

Thepseudocode ofMoDE-CIQ is shown as Pseudocode 1.

4. Numerical Experiments

In this section, two sets of experiments are conducted to
illustrate the effectiveness of MoDE-CIQ algorithm and the
advantage of the multiobjective model, respectively.

4.1. Experiments for Showing the Multiobjective
Algorithmic Superiority

4.1.1. Experimental Background. Currently, the heuristic
algorithms employed to solve the image color quantization
problem have mainly GA, PSO, and DE. Reference [16]
indicated that PSO is superior to GA. In [31], DE and
PSO show similar performance on image color quantization.
However, due to simple operation, litter parameters, and fast
convergence, DE is the better choice to use than PSO. These
mean that DE is a competitive image color quantization in
the heuristic algorithms for image color quantization. Ref-
erence [19] proposed a color image quantization algorithm
based on self-adaptive hybrid DE (SaDE-CIQ), in which
the parameters of DE are automatically adjusted by a self-
adaptive mechanic. Then, SaDE-CIQ is compared with 𝐾-
means and the color image quantization algorithm using
PSO (PSO-CIQ). Table 2 shows the smallest and the largest
objective values for the three algorithms over 10 runs obtained
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Table 3: The best MSE values and the corresponding objective values of MoDE-CIQ.

Image 𝑝 values 𝑑max 𝑑min MSE

Peppers
0.1 25.6127 28.2967 19.1029
0.05 28.2967 31.9070 18.8444
0.01 24.8917 38.4062 19.5632

Baboon
0.1 27.8841 45.8284 22.9602
0.05 27.8083 45.5262 22.9887
0.01 27.9030 44.7175 22.9654

Lena
0.1 20.2311 26.4388 14.2847
0.05 20.2849 32.0907 15.6655
0.01 21.1913 32.9181 15.5229

Airplane
0.1 22.0570 24.1028 10.7517
0.05 22.0105 29.6160 11.2520
0.01 20.9759 26.9999 10.9591

Table 4: 𝑑max, 𝑑min, and MSE of the quantized images with 16 colors by three algorithms.

Image 𝑝 values Algorithm 𝑑max 𝑑min MSE

Peppers 0.1
MoDE-CIQ 25.6127 28.2967 19.1029
SaDE-CIQ3 34.2489 45.8673 20.3563
SaDE-CIQ 37.2450 22.2473 17.4577

Baboon 0.1
MoDE-CIQ 27.8841 45.8284 22.9602
SaDE-CIQ3 27.8122 45.8426 22.9592
SaDE-CIQ 28.1805 36.4773 22.7644

Lena 0.1
MoDE-CIQ 20.2311 26.4388 14.2847
SaDE-CIQ3 22.8824 27.5461 13.5264
SaDE-CIQ 22.2973 19.0143 12.9641

Airplane 0.05
MoDE-CIQ 22.0105 29.6160 11.2520
SaDE-CIQ3 113.2050 34.8630 17.4217
SaDE-CIQ 23.7529 8.2540 8.0544

in [19]. The results show that SaDE-CIQ is an effective
color image quantization algorithm, and SaDE-CIQ has
better quantization quality than 𝐾-means and PSO-CIQ. It
is naturally to be thought that SaDE-CIQ is the best one of
the image color quantization algorithms based on heuristic
algorithms.

Reference [28] presented a linear weighting objective
function of 𝑑max and 𝑑min and MSE below:

𝑔 = 𝑤
1
𝑑max + 𝑤2 (255 − 𝑑min) + 𝑤3 ⋅MSE, (10)

where 𝑤
1
, 𝑤
2
, and 𝑤

3
are the user-defined weights of the

subobjectives. The linear weighting objective function (10)
is the only one, including the three evaluation criteria of
MoDE-CIQ, in existing references. So in this section, we will
compare MoDE-CIQ, SaDE-CIQ, and SaDE-CIQ3 obtained
by replacing the objective function MSE with the linear
weighting objective function (10) in SaDE-CIQ.

4.1.2. Experimental Design. MoDE-CIQ, SaDE-CIQ, and
SaDE-CIQ3 are implemented to quantize the four test images

in Figure 1 into the quantized images with 16 colors. Each
algorithm is run 10 times. The parameters of algorithms are
set as follows:

𝐾 = 16, NP = 100, 𝑡max = 200, 𝐿𝑜𝑜𝑝 = 5. Mixed
probability𝑝 takes three different values, 0.1, 0.05, and
0.01. 𝑤

1
, 𝑤
2
, and 𝑤

3
take the same values as those in

[28].

4.1.3. Experimental Results. For MoDE-CIQ, Table 3 reports
the best MSE values and the corresponding objective values
𝑑max, 𝑑min in 10 runs. In fact, smaller 𝑑max is better, larger 𝑑min
is better, and smaller MSE is better. As shown in Table 3, the
following conclusions are obtained. (i) For Peppers, onlyMSE
is best as 𝑝 = 0.05. 𝑑max and 𝑑min are best as 𝑝 = 0.01. As
𝑝 = 0.1, 𝑑max, 𝑑min, and MSE are all medians, and 𝑑max and
MSE are similar to their corresponding best values. (ii) For
Baboon, as 𝑝 = 0.1, 𝑑min and MSE are all best. (iii) For Lena,
𝑑max and MSE are all best as 𝑝 = 0.1. (iv) For Airplane, as
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(a) Peppers (b) MoDE-CIQ

(c) SaDE-CIQ3 (d) SaDE-CIQ

Figure 3: The quantized images of Peppers with 16 colors obtained by three algorithms.

𝑝 = 0.05, 𝑑max is best, 𝑑min is a median, andMSE is similar to
the other two values.

According to the above conclusions, we will take 𝑝 as 0.1
for Peppers, Baboon, and Lena in the following comparing
experiments.However, there are few and extremely unequally
distributed base colors inAirplane. For preservingmain color
gradations and richer color levers of original images, 𝑑max
should be as small as possible. So we will take 𝑝 as 0.05 for
Airplane in the following comparing experiments.

For comparingMoDE-CIQ, SaDE-CIQ, and SaDE-CIQ3,
Table 4 reports 𝑑max, 𝑑min, and MSE of their quantized
images, MSE values of which are the smallest in their 10
runs. SaDE-CIQ aims to minimize its objective MSE, so its
values of MSE are surely the best than those of other two
algorithms. But the values of 𝑑max and 𝑑min by MoDE-CIQ
are all better than those of SaDE-CIQ. The values of 𝑑max
and 𝑑min obtained by SaDE-CIQ3 for Peppers and Baboon
are also better than those of SaDE-CIQ. The values of 𝑑max,
𝑑min, and MSE obtained by MoDE-CIQ are better than those

of SaDE-CIQ3, except for their similar values of 𝑑max, 𝑑min,
and MSE for Baboon, and the values of MSE for Lena.
Figures 3, 4, 5, and 6 show all quantized images of the four
common test images in Figure 1. In Figures 3–6, all subfigures
(a) are the original test images. Subfigures (b), subfigures
(c), and subfigures (d) are the quantized images separately
obtained by MoDE-CIQ, SaDE-CIQ3, and SaDE-CIQ. The
visual effects of the quantized images are compared as follows.
(i) For Peppers (shown in Figure 3), there are contrasting
and equally distributed main base colors, so the quantized
images obtained by three algorithms visually have similar
color distortions. The differences in the quantization quality
of these quantized images depend on their color gradations
of larger regions with similar colors.The quantized images of
MoDE-CIQ and SaDE-CIQ have the more rich color levers
than the one of the SaDE-CIQ3. (ii) For Baboon (shown in
Figure 4), there are also contrasting and equally distributed
main base colors, but there are little larger regions with
similar colors. So the quantized images of threemethods have



8 Computational Intelligence and Neuroscience

(a) Baboon (b) MoDE-CIQ

(c) SaDE-CIQ3 (d) SaDE-CIQ

Figure 4: The quantized images of Baboon with 16 colors obtained by three algorithms.

similar effects. (iii) For Lena (shown in Figure 5), there are
many shaded regions in it. So differences in the quantization
quality of the corresponding quantized images depend on
the transition from shaded regions to highlights. MoDE-CIQ
obtains the quantized image with more natural transition
than SaDE-CIQ and SaDE-CIQ3. (iv) For Airplane (shown
in Figure 6), there are extremely unequally distributed base
colors. Obviously, the quantized image of SaDE-CIQ3 has
the largest color distortion. Although the quantized image of
SaDE-CIQ has a little better color distortion than that of the
multiobjective algorithm, the former loses some detail colors,
such as the cloud in the sky.

According the above results, for the images with contrast-
ing and equally distributedmain base colors, the quantization
effects of MoDE-CIQ and SaDE-CIQ are similar. But for the
images with many shaded regions and extremely unequally
distributed base colors, MoDE-CIQ could make the colors
more natural and preservemore detail colors. In SaDE-CIQ3,
the weighted factors in (10) affect its quantization quality.

Thus, we can think MoDE-CIQ is superior to the other two
algorithms.

4.2. Experiments for Showing the Advantage of the Multiob-
jective Model. As the statement on Step 4 of MoDE-CIQ,
we can obtain an approximative Pareto solution set. This is
an advantage comparing to all single-objective algorithms.
The above experiments reserved the approximative Pareto-
optimal solutions of all four images. The solution sets cor-
responding to Peppers, Baboon, Lena, and Airplane, respec-
tively, include 13 solutions (shown in Table 5), 9 solutions (in
Table 6), 11 solutions (in Table 7), and 8 solutions (in Table 8).
For comparing these optimal solutions, their corresponding
MSE values are listed. Figure 7 shows the Pareto front of
these Pareto-optimal solutions. These optimization solutions
present some quantized images with different effects. Users
can select the suitable quantized image according to their
requirements for the color gradations and details.
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(a) Lena (b) MoDE-CIQ

(c) SaDE-CIQ3 (d) SaDE-CIQ

Figure 5: The quantized images of Lena with 16 colors obtained by three algorithms.

Table 5: Pareto-optimal solutions for Peppers.

Order 𝑔
1
(𝑥) 𝑔

2
(𝑥) MSE

1 24.9238 227.2425 19.5660
2 38.5345 196.8913 25.4623
3 31.0556 208.1886 24.1790
4 34.6405 205.1429 22.2026
5 25.6127 226.7033 19.1029
6 35.2191 197.7366 23.0621
7 31.4675 207.8684 23.3818
8 34.4429 205.8758 22.2859
9 34.8841 204.8451 26.031
10 34.1102 207.7311 23.1158
11 25.9563 217.8530 20.4536
12 28.4238 210.6036 22.2533
13 34.3636 206.7747 21.8853

By the experimental results of the above two parts,
MoDE-CIQ is a competitive algorithm for image color
quantization.

Table 6: Pareto-optimal solutions for Baboon.

Order 𝑔
1
(𝑥) 𝑔

2
(𝑥) MSE

1 27.3819 212.0693 23.1123
2 27.8841 209.1716 22.9602
3 31.8821 204.127 24.7008
4 29.2681 205.8375 24.4271
5 30.9412 204.9553 24.6433
6 33.8514 202.2041 25.7050
7 30.2455 205.5812 24.5084
8 27.8998 208.0066 227.341
9 27.6801 209.3535 227.341

All the above algorithms were implemented in Visual
C++ and the experimentswere conducted on a computerwith
Intel� Xeon� CPU E3-1230 v3 @ 3.30GHZ and 8GB RAM.

5. Conclusions
This paper established amultiobjective image color quantization
model, in which intracluster distance 𝑑max and intercluster
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(a) Airplane (b) MoDE-CIQ

(c) SaDE-CIQ3 (d) SaDE-CIQ

Figure 6: The quantized images of Airplane with 16 colors obtained by three algorithms.

Table 7: Pareto-optimal solutions for Lena.

Order 𝑔
1
(𝑥) 𝑔

2
(𝑥) MSE

1 24.9313 207.9088 19.8533
2 20.2311 228.5612 14.2847
3 20.6109 228.4630 15.1880
4 26.7185 202.3789 20.9155
5 25.9452 203.7679 20.8445
6 24.5586 209.2558 18.9967
7 23.6997 209.7721 19.8327
8 22.3126 212.7511 20.1288
9 21.1493 216.7855 17.3328
10 24.9279 209.1586 233.6600
11 20.6396 224.5480 233.6600

separation 𝑑min are selected as its objective functions. A
multiobjective image color quantization algorithm based on
self-adaptive hybrid DE (MoDE-CIQ) was proposed to solve
this model. MoDE-CIQ emerges the ideas of SaDE-CIQ [19]

Table 8: Pareto-optimal solutions for Airplane.

Order 𝑔
1
(𝑥) 𝑔

2
(𝑥) MSE

1 23.9419 220.4130 12.4973
2 21.2536 225.4198 11.4192
3 22.3128 223.4460 11.5732
4 22.0105 225.3840 11.2520
5 22.2876 225.0752 11.4864
6 25.2011 219.2880 13.5785
7 68.6311 212.3398 316.6950
8 22.1871 225.3009 316.6950

and a multipopulation DE algorithm VEDE [30], and applies
MSE to determine the optimal solution. The multiobjective
model and the proposed algorithm present a strategy to
obtain a quantized image which holds the smallest color
distortion among those images with a balance between the
optimal color gradation and the optimal color details. The
experimental results indicated that the multiobjective model
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Figure 7: Pareto front of MoDE-CIQ.

andMoDE-CIQ are effective and competitive for image color
quantization problems.
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