5 research outputs found

    Explicit Building Block Multiobjective Evolutionary Computation: Methods and Applications

    Get PDF
    This dissertation presents principles, techniques, and performance of evolutionary computation optimization methods. Concentration is on concepts, design formulation, and prescription for multiobjective problem solving and explicit building block (BB) multiobjective evolutionary algorithms (MOEAs). Current state-of-the-art explicit BB MOEAs are addressed in the innovative design, execution, and testing of a new multiobjective explicit BB MOEA. Evolutionary computation concepts examined are algorithm convergence, population diversity and sizing, genotype and phenotype partitioning, archiving, BB concepts, parallel evolutionary algorithm (EA) models, robustness, visualization of evolutionary process, and performance in terms of effectiveness and efficiency. The main result of this research is the development of a more robust algorithm where MOEA concepts are implicitly employed. Testing shows that the new MOEA can be more effective and efficient than previous state-of-the-art explicit BB MOEAs for selected test suite multiobjective optimization problems (MOPs) and U.S. Air Force applications. Other contributions include the extension of explicit BB definitions to clarify the meanings for good single and multiobjective BBs. A new visualization technique is developed for viewing genotype, phenotype, and the evolutionary process in finding Pareto front vectors while tracking the size of the BBs. The visualization technique is the result of a BB tracing mechanism integrated into the new MOEA that enables one to determine the required BB sizes and assign an approximation epistasis level for solving a particular problem. The culmination of this research is explicit BB state-of-the-art MOEA technology based on the MOEA design, BB classifier type assessment, solution evolution visualization, and insight into MOEA test metric validation and usage as applied to test suite, deception, bioinformatics, unmanned vehicle flight pattern, and digital symbol set design MOPs

    Towards an Information Theoretic Framework for Evolutionary Learning

    Get PDF
    The vital essence of evolutionary learning consists of information flows between the environment and the entities differentially surviving and reproducing therein. Gain or loss of information in individuals and populations due to evolutionary steps should be considered in evolutionary algorithm theory and practice. Information theory has rarely been applied to evolutionary computation - a lacuna that this dissertation addresses, with an emphasis on objectively and explicitly evaluating the ensemble models implicit in evolutionary learning. Information theoretic functionals can provide objective, justifiable, general, computable, commensurate measures of fitness and diversity. We identify information transmission channels implicit in evolutionary learning. We define information distance metrics and indices for ensembles. We extend Price\u27s Theorem to non-random mating, give it an effective fitness interpretation and decompose it to show the key factors influencing heritability and evolvability. We argue that heritability and evolvability of our information theoretic indicators are high. We illustrate use of our indices for reproductive and survival selection. We develop algorithms to estimate information theoretic quantities on mixed continuous and discrete data via the empirical copula and information dimension. We extend statistical resampling. We present experimental and real world application results: chaotic time series prediction; parity; complex continuous functions; industrial process control; and small sample social science data. We formalize conjectures regarding evolutionary learning and information geometry

    AN INVESTIGATION OF METAHEURISTICS USING PATH- RELINKING ON THE QUADRATIC ASSIGNMENT PROBLEM

    Get PDF
    The Quadratic Assignment Problem (QAP) is a widely researched, yet complex, combinatorial optimization problem that is applicable in modeling many real-world problems. Specifically, many optimization problems are formulated as QAPs. To resolve QAPs, the recent trends have been to use metaheuristics rather than exact or heuristic methods, and many researchers have found that the use of hybrid metaheuristics is actually more effective. A newly proposed hybrid metaheuristic is path relinking (PR), which is used to generate solutions by combining two or more reference solutions. In this dissertation, we investigated these diversification and intensification mechanisms using QAP. To satisfy the extensive demands of the computational resources, we utilized a High Throughput Computing (HTC) environment and test cases from the QAPLIB (QAP test case repository). This dissertation consists of three integrated studies that are built upon each other. The first phase explores the effects of the parameter tuning, metaheuristic design, and representation schemes (random keys and permutation solution encoding procedures) of two path-based metaheuristics (Tabu Search and Simulated Annealing) and two population-based metaheuristics (Genetic Algorithms and Artificial Immune Algorithms) using QAP as a testbed. In the second phase of the study, we examined eight tuned metaheuristics representing two representation schemes using problem characteristics. We use problem size, flow and distance dominance measures, sparsity (number of zero entries in the matrices), and the coefficient of correlation measures of the matrices to build search trajectories. The third phase of the dissertation focuses on intensification and diversification mechanisms using path-relinking (PR) procedures (the two variants of position-based path relinking) to enhance the performance of path-based and population-based metaheuristics. The current research in this field has explored the unusual effectiveness of PR algorithms in variety of applications and has emphasized the significance of future research incorporating more sophisticated strategies and frameworks. In addition to addressing these issues, we also examined the effects of solution representations on PR augmentation. For future research, we propose metaheuristic studies using fitness landscape analysis to investigate particular metaheuristics\u27 fitness landscapes and evolution through parameter tuning, solution representation, and PR augmentation. The main research contributions of this dissertation are to widen the knowledge domains of metaheuristic design, representation schemes, parameter tuning, PR mechanism viability, and search trajectory analysis of the fitness landscape using QAPs

    Using MapReduce Streaming for Distributed Life Simulation on the Cloud

    Get PDF
    Distributed software simulations are indispensable in the study of large-scale life models but often require the use of technically complex lower-level distributed computing frameworks, such as MPI. We propose to overcome the complexity challenge by applying the emerging MapReduce (MR) model to distributed life simulations and by running such simulations on the cloud. Technically, we design optimized MR streaming algorithms for discrete and continuous versions of Conway’s life according to a general MR streaming pattern. We chose life because it is simple enough as a testbed for MR’s applicability to a-life simulations and general enough to make our results applicable to various lattice-based a-life models. We implement and empirically evaluate our algorithms’ performance on Amazon’s Elastic MR cloud. Our experiments demonstrate that a single MR optimization technique called strip partitioning can reduce the execution time of continuous life simulations by 64%. To the best of our knowledge, we are the first to propose and evaluate MR streaming algorithms for lattice-based simulations. Our algorithms can serve as prototypes in the development of novel MR simulation algorithms for large-scale lattice-based a-life models.https://digitalcommons.chapman.edu/scs_books/1014/thumbnail.jp

    An Effective Explicit Building Block MOEA, the MOMGA-IIa Abstract- The Multiobjective Messy Genetic Algorithm

    No full text
    (MOMGA) has evolved over the last eight years. The current version, MOMGA-IIa, incorporates efficient processes for obtaining the Pareto front while maintaining a distribution of solutions evaluating to vectors across the Pareto front. Initially described are principle classifiers within explicit building block (BB) multiobjective evolutionary algorithms (MOEAs). Novel design characteristics are addressed as essential elements for making MOMGA-IIa a state-of-the-art explicit BB MOEA. Additionally, a comparison of state-of-the-art explicit BB MOEAs using test suite problems, contemporary quality metrics, extensive testing, and statistical analysis is delivered. Finally, a supplementary historical view of the development of the MOMGA-series MOEA is provided. 1
    corecore