8,269 research outputs found

    MDFRCNN: Malware Detection using Faster Region Proposals Convolution Neural Network

    Get PDF
    Technological advancement of smart devices has opened up a new trend: Internet of Everything (IoE), where all devices are connected to the web. Large scale networking benefits the community by increasing connectivity and giving control of physical devices. On the other hand, there exists an increased ‘Threat’ of an ‘Attack’. Attackers are targeting these devices, as it may provide an easier ‘backdoor entry to the users’ network’.MALicious softWARE (MalWare) is a major threat to user security. Fast and accurate detection of malware attacks are the sine qua non of IoE, where large scale networking is involved. The paper proposes use of a visualization technique where the disassembled malware code is converted into gray images, as well as use of Image Similarity based Statistical Parameters (ISSP) such as Normalized Cross correlation (NCC), Average difference (AD), Maximum difference (MaxD), Singular Structural Similarity Index Module (SSIM), Laplacian Mean Square Error (LMSE), MSE and PSNR. A vector consisting of gray image with statistical parameters is trained using a Faster Region proposals Convolution Neural Network (F-RCNN) classifier. The experiment results are promising as the proposed method includes ISSP with F-RCNN training. Overall training time of learning the semantics of higher-level malicious behaviors is less. Identification of malware (testing phase) is also performed in less time. The fusion of image and statistical parameter enhances system performance with greater accuracy. The benchmark database from Microsoft Malware Classification challenge has been used to analyze system performance, which is available on the Kaggle website. An overall average classification accuracy of 98.12% is achieved by the proposed method

    Image-based malware classification: A space filling curve approach

    Get PDF
    Anti-virus (AV) software is effective at distinguishing between benign and malicious programs yet lack the ability to effectively classify malware into their respective family classes. AV vendors receive considerably large volumes of malicious programs daily and so classification is crucial to quickly identify variants of existing malware that would otherwise have to be manually examined. This paper proposes a novel method of visualizing and classifying malware using Space-Filling Curves (SFC\u27s) in order to improve the limitations of AV tools. The classification models produced were evaluated on previously unseen samples and showed promising results, with precision, recall and accuracy scores of 82%, 80% and 83% respectively. Furthermore, a comparative assessment with previous research and current AV technologies revealed that the method presented her was robust, outperforming most commercial and open-source AV scanner software programs
    • …
    corecore