1,348 research outputs found

    Application of Remote Sensing to the Chesapeake Bay Region. Volume 2: Proceedings

    Get PDF
    A conference was held on the application of remote sensing to the Chesapeake Bay region. Copies of the papers, resource contributions, panel discussions, and reports of the working groups are presented

    Application of Remote Sensing to the Chesapeake Bay Region. Volume 1: Executive summary

    Get PDF
    The proceedings are presented of a conference, jointly sponsored by the National Aeronautics and Space Administration, the U.S. Environmental Protection Agency, and the University of Maryland. The purpose of the Conference was to assemble representatives of federal and state government agencies engaged in research on the condition and evolution of the Chesapeake Bay to compose a status report, to present current activities and future plans, and to recommend a long-range future course of policies and programs

    Circulation, Vol. 20, No. 3

    Get PDF
    Summer 2015 issue of CCPO Circulation featuring article ODU-European Collaborations on Climate Change & Sea Level Rise Research by Dr. Tal Ezer.https://digitalcommons.odu.edu/ccpo_circulation/1000/thumbnail.jp

    Circulation, Vol. 5, No. 4

    Get PDF
    Summer 1998 issue of CCPO Circulation featuring article Bay Mouth Climatologyhttps://digitalcommons.odu.edu/ccpo_circulation/1031/thumbnail.jp

    Virginia Institute of Marine Science Fortieth Annual Report for the Period Ending 30 June 1981

    Get PDF
    https://scholarworks.wm.edu/vimsannualrpt/1017/thumbnail.jp

    Virginia Institute of Marine Science Programs and Services

    Get PDF
    Programs and faculty, education and Institute support resources are described

    Progress and challenges in coupled hydrodynamic-ecological estuarine modeling

    Get PDF
    © The Author(s), 2015. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Estuaries and Coasts 39 (2016): 311-332, doi:10.1007/s12237-015-0011-y.Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a “theory of everything” for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy.NKG, ALA, and RPS acknowledge support from the USGS Coastal and Marine Geology Program. DKR gratefully acknowledges support from NSF (OCE-1314642) and NIEHS (1P50-ES021923-01). MJB and JMPV gratefully acknowledge support from NOAA NOS NCCOS (NA05NOS4781201 and NA11NOS4780043). MJB and SJL gratefully acknowledge support from the Strategic Environmental Research and Development Program—Defense Coastal/Estuarine Research Program (RC-1413 and RC-2245)

    Virginia Institute of Marine Science Forty-Sixth Annual Report (1987)

    Get PDF
    For the period ending June 30, 1987.https://scholarworks.wm.edu/vimsannualrpt/1023/thumbnail.jp

    Progress and Challenges in Coupled Hydrodynamic-Ecological Estuarine Modeling

    Get PDF
    Numerical modeling has emerged over the last several decades as a widely accepted tool for investigations in environmental sciences. In estuarine research, hydrodynamic and ecological models have moved along parallel tracks with regard to complexity, refinement, computational power, and incorporation of uncertainty. Coupled hydrodynamic-ecological models have been used to assess ecosystem processes and interactions, simulate future scenarios, and evaluate remedial actions in response to eutrophication, habitat loss, and freshwater diversion. The need to couple hydrodynamic and ecological models to address research and management questions is clear because dynamic feedbacks between biotic and physical processes are critical interactions within ecosystems. In this review, we present historical and modern perspectives on estuarine hydrodynamic and ecological modeling, consider model limitations, and address aspects of model linkage, skill assessment, and complexity. We discuss the balance between spatial and temporal resolution and present examples using different spatiotemporal scales. Finally, we recommend future lines of inquiry, approaches to balance complexity and uncertainty, and model transparency and utility. It is idealistic to think we can pursue a theory of everything for estuarine models, but recent advances suggest that models for both scientific investigations and management applications will continue to improve in terms of realism, precision, and accuracy

    Physical Sciences

    Get PDF
    Informational booklet describing the Physical Sciences program at the Virginia Institute of Marine Science. Facilities, faculty profiles and research areas outlined
    corecore