14 research outputs found

    An average-case depth hierarchy theorem for Boolean circuits

    Full text link
    We prove an average-case depth hierarchy theorem for Boolean circuits over the standard basis of AND\mathsf{AND}, OR\mathsf{OR}, and NOT\mathsf{NOT} gates. Our hierarchy theorem says that for every d2d \geq 2, there is an explicit nn-variable Boolean function ff, computed by a linear-size depth-dd formula, which is such that any depth-(d1)(d-1) circuit that agrees with ff on (1/2+on(1))(1/2 + o_n(1)) fraction of all inputs must have size exp(nΩ(1/d)).\exp({n^{\Omega(1/d)}}). This answers an open question posed by H{\aa}stad in his Ph.D. thesis. Our average-case depth hierarchy theorem implies that the polynomial hierarchy is infinite relative to a random oracle with probability 1, confirming a conjecture of H{\aa}stad, Cai, and Babai. We also use our result to show that there is no "approximate converse" to the results of Linial, Mansour, Nisan and Boppana on the total influence of small-depth circuits, thus answering a question posed by O'Donnell, Kalai, and Hatami. A key ingredient in our proof is a notion of \emph{random projections} which generalize random restrictions

    A Near-Optimal Depth-Hierarchy Theorem for Small-Depth Multilinear Circuits

    Full text link
    We study the size blow-up that is necessary to convert an algebraic circuit of product-depth Δ+1\Delta+1 to one of product-depth Δ\Delta in the multilinear setting. We show that for every positive Δ=Δ(n)=o(logn/loglogn),\Delta = \Delta(n) = o(\log n/\log \log n), there is an explicit multilinear polynomial P(Δ)P^{(\Delta)} on nn variables that can be computed by a multilinear formula of product-depth Δ+1\Delta+1 and size O(n)O(n), but not by any multilinear circuit of product-depth Δ\Delta and size less than exp(nΩ(1/Δ))\exp(n^{\Omega(1/\Delta)}). This result is tight up to the constant implicit in the double exponent for all Δ=o(logn/loglogn).\Delta = o(\log n/\log \log n). This strengthens a result of Raz and Yehudayoff (Computational Complexity 2009) who prove a quasipolynomial separation for constant-depth multilinear circuits, and a result of Kayal, Nair and Saha (STACS 2016) who give an exponential separation in the case Δ=1.\Delta = 1. Our separating examples may be viewed as algebraic analogues of variants of the Graph Reachability problem studied by Chen, Oliveira, Servedio and Tan (STOC 2016), who used them to prove lower bounds for constant-depth Boolean circuits

    Super-Linear Gate and Super-Quadratic Wire Lower Bounds for Depth-Two and Depth-Three Threshold Circuits

    Full text link
    In order to formally understand the power of neural computing, we first need to crack the frontier of threshold circuits with two and three layers, a regime that has been surprisingly intractable to analyze. We prove the first super-linear gate lower bounds and the first super-quadratic wire lower bounds for depth-two linear threshold circuits with arbitrary weights, and depth-three majority circuits computing an explicit function. \bullet We prove that for all ϵlog(n)/n\epsilon\gg \sqrt{\log(n)/n}, the linear-time computable Andreev's function cannot be computed on a (1/2+ϵ)(1/2+\epsilon)-fraction of nn-bit inputs by depth-two linear threshold circuits of o(ϵ3n3/2/log3n)o(\epsilon^3 n^{3/2}/\log^3 n) gates, nor can it be computed with o(ϵ3n5/2/log7/2n)o(\epsilon^{3} n^{5/2}/\log^{7/2} n) wires. This establishes an average-case ``size hierarchy'' for threshold circuits, as Andreev's function is computable by uniform depth-two circuits of o(n3)o(n^3) linear threshold gates, and by uniform depth-three circuits of O(n)O(n) majority gates. \bullet We present a new function in PP based on small-biased sets, which we prove cannot be computed by a majority vote of depth-two linear threshold circuits with o(n3/2/log3n)o(n^{3/2}/\log^3 n) gates, nor with o(n5/2/log7/2n)o(n^{5/2}/\log^{7/2}n) wires. \bullet We give tight average-case (gate and wire) complexity results for computing PARITY with depth-two threshold circuits; the answer turns out to be the same as for depth-two majority circuits. The key is a new random restriction lemma for linear threshold functions. Our main analytical tool is the Littlewood-Offord Lemma from additive combinatorics

    Affine Extractors and AC0-Parity

    Get PDF
    We study a simple and general template for constructing affine extractors by composing a linear transformation with resilient functions. Using this we show that good affine extractors can be computed by non-explicit circuits of various types, including AC0-Xor circuits: AC0 circuits with a layer of parity gates at the input. We also show that one-sided extractors can be computed by small DNF-Xor circuits, and separate these circuits from other well-studied classes. As a further motivation for studying DNF-Xor circuits we show that if they can approximate inner product then small AC0-Xor circuits can compute it exactly - a long-standing open problem

    PAC-learning gains of Turing machines over circuits and neural networks

    Full text link
    A caveat to many applications of the current Deep Learning approach is the need for large-scale data. One improvement suggested by Kolmogorov Complexity results is to apply the minimum description length principle with computationally universal models. We study the potential gains in sample efficiency that this approach can bring in principle. We use polynomial-time Turing machines to represent computationally universal models and Boolean circuits to represent Artificial Neural Networks (ANNs) acting on finite-precision digits. Our analysis unravels direct links between our question and Computational Complexity results. We provide lower and upper bounds on the potential gains in sample efficiency between the MDL applied with Turing machines instead of ANNs. Our bounds depend on the bit-size of the input of the Boolean function to be learned. Furthermore, we highlight close relationships between classical open problems in Circuit Complexity and the tightness of these
    corecore