5 research outputs found

    Analytical modelling solution of producer mobility support scheme for named data networking

    Get PDF
    Named Data Networking (NDN) is a clean-slate future Internet architecture proposed to support content mobility. However, content producer mobility is not supported fundamentally and faces many challenges such as, high handoff latency, signaling overhead cost and unnecessary Interest packet losses. Hence, many approaches indirection-based approach, mapping-based approach, locator-based approach and control/data plane-based approach were proposed to address these problems. Mapping-based and control/data plane-based approach deployed servers for name resolution serveces to provide optimal data path after handoff, but introduces high handoff latency and signalling overhead cost. Indirection-based and locator-based approach schemes provide normal handoff delay, but introduces sub-optimal or tiangular routing path. Therefore, there is needs to provide substantial producer mobility support that minimizes the handoff latency, signaling cost and improve data packets delivery via optimal path once a content producer relocates to new location. This paper proposed a scheme that provides optimal data path using mobility Interest packets and broadcasting strategy. Analytical investigation result shows that our proposed scheme outperforms existing approaches in terms of handoff latency, signaling cost and path optimization

    Producer Mobility Support Schemes for Named Data Networking: A Survey

    Get PDF
    Mobile devices connectivity and data traffic growth requires scalable and efficient means of data distribution over the Internet. Thus, influenced the needs for upgrading or replacing the current Internet architecture to cater the situation as Named Data Networking (NDN) was proposed. NDN is clean-slate Internet architecture, proposed to replace IP with hierarchical named content that utilizes route aggregation to improve scalability and support mobility. Although, NDN provides supports for content consumer mobility with the help of catching capabilities, however, content producer faces many problems similar to mobility in IP architecture, such as, long handoff delay, unnecessary Interest packet losses and high bandwidth utilization. Hence, many concepts and schemes were proposed to address these problems. This paper reviewed and conceptually analyzed the schemes based on their fundamental design that broadly categorized into indirection-based approach, mapping-based approach, locator-based approach and control/data plane-based approach. In the review analysis, mapping-based approach schemes provide optimal path for packets delivery, high handoff delay Indirection-based and locator-based approach schemes provide normal handoff delay, but introduces tiangular routing path. The control/data plane-based approach schemes provide sub-optimal routing path and high handoff delay. The paper provided both strength and weakness of each scheme for further research

    PMSS: Producer Mobility Support Scheme Optimization with RWP Mobility Model in Named Data Networking

    Get PDF
    Abstract: The movement pattern of mobile producer plays an important role in mobility performance analysis of the wireless and mobile network. However, the producer mobility behavior is directly affecting the handoff latency and signaling overhead cost. Many researchers provide analytical investigation to analyze and solve the handoff problems and compared with the simulation result. To justify between simulation and analytical investigation, movement behavior of mobile node needs to be included in the analytical investigation to make it possible to compare with the simulation-based result. This paper incorporated Random WayPoint Mobility (RWPM) model, to determine the behavior of mobile producer, for analytical solution of producer mobility support in NDN. In this paper, we introduce mobility Interest packets to conveyed new prefix or location of mobile producer, a broadcasting strategy to facilitate the handoff process and the immobile anchor router was modified to perform a dual function that is, tagging of anchors and broadcasting of tagged mobility Interest packets. The performance analysis for mobile producer behavior and handoff latency shows that our proposed Producer Mobility Support Scheme (PMSS) reduces handoff latency compared to DNS-like and Home Agent routing approach

    Producer mobility support scheme for indirection-based mobility approach in named data networking

    Get PDF
    Named Data Networking (NDN) is a clean-slate future Internet architecture proposed to support content mobility by using hierarchical naming instead of IP addresses for routing. The hierarchical naming structure of NDN offers more benefits in supporting consumer mobility. However, the movements of producer inflict changes in routing name prefix hierarchy, which makes the entire network unaware of the new location of the producer. Thus, it causes some significant challenges, such as unnecessary Interest packet losses, high handoff latency, high signaling overhead cost, poor utilization of bandwidth, and path stretching. The aim of this research is to propose a Producer Mobility Support Scheme (PMSS) in order to minimize the handoff latency, signaling cost, improve data packets delivery via optimal path once a content producer relocated. The proposed PMSS model includes the formulated Mobility Weighted Function to incorporate movement behavior of the mobile producer. Also, Mobility Interest packet was designed to convey binding information and Broadcasting Strategy to facilitate handoff processes by updating the intermediate routers. Therefore, modeling and simulation methodologies were used in the design and performance evaluation of PMSS for rigorous investigation. The analytical result of PMSS scheme outperforms Optimal Producer Mobility for Larger-scale scheme with 50% lower handoff latency and signaling cost. Moreover, it minimizes 46% handoff signaling cost and improves 32% data path optimization as compared to the Kite scheme. The simulation results show that the proposed PMSS scheme minimizes 40% handoff latency, 28% packets delay, 28% unnecessary Interest packets loss, and improves 20% throughput. This study contributes to the development of the movement behavior model and mobility update packets. The findings have significant implication to support seamless mobility and the integration of NDN with other networks without additional mechanism

    Compound popular content caching strategy to enhance the cache management performance in named data networking

    Get PDF
    Named Data Networking (NDN) is a leading research paradigm for the future Internet architecture. The NDN offers in-network cache which is the most beneficial feature to reduce the difficulties of the location-based Internet paradigm. The objective of cache is to achieve a scalable, effective, and consistent distribution of information. However, the main issue which NDN facing is the selection of appropriate router during the content’s transmission that can disrupt the overall network performance. The reason is that how each router takes a decision to the cache which content needs to cache at what location that can enhance the complete caching performance. Therefore, several cache management strategies have been developed. Still, it is not clear which caching strategy is the most ideal for each situation. This study proposes a new cache management strategy named as Compound Popular Content Caching Strategy (CPCCS) to minimize cache redundancy with enhanced diversity ratio and improving the accessibility of cached content by providing short stretch paths. The CPCCS was developed by combining two mechanisms named as Compound Popular Content Selection (CPCS) and Compound Popular Content Caching (CPCC) to differentiate the contents regarding their Interest frequencies using dynamic threshold and to find the best possible caching positions respectively. CPCCS is compared with other NDN-based caching strategies, such as Max-Gain In-network Caching, WAVE popularity-based caching strategy, Hop-based Probabilistic Caching, Leaf Popular Down, Most Popular Cache, and Cache Capacity Aware Caching in a simulation environment. The results show that the CPCCS performs better in which the diversity and cache hit ratio are increased by 34% and 14% respectively. In addition, the redundancy and path stretch are decreased by 44% and 46% respectively. The outcomes showed that the CPCCS have achieved enhanced caching performance with respect to different cache size (1GB to 10GB) and simulation parameters than other caching strategies. Thus, CPCCS can be applicable in future for the NDN-based emerging technologies such as Internet of Things, fog and edge computing
    corecore