7 research outputs found

    Computer-aided classification of liver lesions from CT images based on multiple ROI

    Get PDF
    This manuscript introduces an automated Computer-Aided Classification (CAD) system to classify liver lesion into Benign or Malignant. The system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features from Multiple ROI, which is the novelty. Finally, classifying liver lesions into benign and malignant. The proposed system divides a segmented lesion into three areas, i.e. inside, outside and border areas. This is because the inside lesion, boundary, and surrounding lesion area contribute different information about the lesion. The features are extracted from the three areas and used to build a new feature vector to feed a classifier. The novelty lies in using the features from the multiple ROIs, and particularly surrounding area (outside), because the Malignant lesion affects the surrounding area differently compared to, the Benign lesion. Utilising the features from inside, border, and outside lesion area supports in better differentiation between benign and malignant lesion. The experimental results showed an enhancement in the classification accuracy (using multiple ROI technique) compared to the accuracy using a single ROI

    Computer-aided classification of liver lesions using contrasting features difference

    Get PDF
    Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate. This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings

    Computer Architecture in Industrial, Biomechanical and Biomedical Engineering

    Get PDF
    This book aims to provide state-of-the-art information on computer architecture and simulation in industry, engineering, and clinical scenarios. Accepted submissions are high in scientific value and provide a significant contribution to computer architecture. Each submission expands upon novel and innovative research where the methods, analysis, and conclusions are robust and of the highest standard. This book is a valuable resource for researchers, students, non-governmental organizations, and key decision-makers involved in earthquake disaster management systems at the national, regional, and local levels

    MR görüntüleri ve MR spektroskopi verileri ile yapay öğrenme tabanlı beyin tümörü tespit yöntemi ve uygulaması

    Get PDF
    06.03.2018 tarihli ve 30352 sayılı Resmi Gazetede yayımlanan “Yükseköğretim Kanunu İle Bazı Kanun Ve Kanun Hükmünde Kararnamelerde Değişiklik Yapılması Hakkında Kanun” ile 18.06.2018 tarihli “Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” gereğince tam metin erişime açılmıştır.Beyinde büyüyen ve gelişen kötü huylu tümörler son zamanlarda insan ölümlerinin en önde gelen nedenlerinden birisi olmaya başlamıştır. Beyin tümörleri için en uygun tedavi yönteminin belirlenmesi hekim tarafından tümörün türünün ve evresinin belirlenmesine bağlıdır. Beyin tümörünün tecrübeli radyologlar tarafından tam olarak teşhis edilebilmesi, Manyetik Rezonans (MR görüntüleri), MR spektroskopi verileri ve patolojik değerlendirmeleri içerisine alan karmaşık bir süreçtir. Genel olarak bir radyolog bu süreçle ilgili olarak önemli doğruluk ve hassaslıkta karar verebiliyor olsa da, hataları en aza indirebilmek için sürekli yeni yöntemler araştırılmaktadır. Bu yüzden radyolog ya da hekimlerin beyin tümörlerinin ayrımını yüksek oranda yapabilecek Bilgisayar Destekli Teşhis (Computer-Aided Detection, CAD / BDT) sistemlerinden yararlanması oldukça önemlidir. Bu tez çalışmasında, hem MR görüntüleri ile hem de MR Spektroskopi (MRS) verileri kullanarak, radyologların karar verme aşamalarında yardımcı olabilecek, beyin tümörlerinin tespitini başarılı bir şekilde yapan yeni bilgisayar destekli yaklaşımlar önerilmiştir. Tez kapsamında geliştirilen ilk yöntem MR görüntüleri üzerinde çalışmakta ve beyin tümörlerinin iyi/kötü huylu ayrımlarını görüntü işleme ve örüntü tanıma teknikleri ile gerçekleştirmektedir. Bu işlemi gerçekleştirmek amacıyla MR görüntüleri üzerinde kafatası kısmını çıkarma için yeni bir görüntü ön-işleme tekniği önerilmiştir. Ayrıca, tümör ayrımlarında sınıflandırıcı etkisini görebilmek için farklı sınıflandırıcıların başarımları kıyaslanmıştır. 188 adet MR görüntüsü üzerinde yapılan detaylı deney sonuçlarına göre, önerilen yöntem ile %96.81 doğruluk oranı ile beyin tümörlerinin iyi / kötü huylu ayrımı gerçekleştirilebilmiştir. Tez kapsamında önerilen bir diğer yöntemde ise, MR spektroskopi sinyalleri üzerinde çalışan ve Yapay Bağışıklık Sistemi (YBS) tabanlı yeni bir BDT yaklaşımı geliştirilmiştir. Önerilen yöntem ile MRS verileri kullanılarak iyi huylu / kötü huylu tümör ayrımı, beyin tümörünün evrelemesi, normal beyin dokusu ile beyin tümörünün ayrımı, metastaz beyin tümörleri ile birincil beyin tümörlerinin ayrımı ve sahte tümörlerin belirlenmesi yüksek başarımla mümkün olmuştur. Çok uluslu ve merkezli bir proje kapsamında elde edilen geniş bir veri seti ile gerçekleştirilen deney sonuçlarına göre sırasıyla %96.97, %100, %100, %98.33 ve %98.44 başarım elde edilmiştir.Malignant tumors growing and developing in the brain have recently become one of the leading causes of death in humans. Determination of the most suitable treatment for brain tumors depends on accurate detection of malignancy, type and grade of the tumor by the physician. Diagnosis of brain tumors by radiologists is a complex process which includes MR images, MR spectroscopy data and pathological assessments. Generally, a radiologist makes a decision with reasonable accuracy and specifity rates. However new methods have been investigated by the researchers to minimize the diagnosis mistakes. Therefore, it is crucial for radiologists or physicians to use a Computer-Aided Diagnosis (CAD) system which will help detection of brain tumors with high success rates. In this thesis, novel computer aided methods, which use MR images and MR Spectroscopy data, have been proposed for the detection of brain tumors to support decision process of the radiologists. The first method developed in the thesis differentiates brain tumors as benign or malignant by image processing and pattern recognition techniques on MR images. To perform this operation, a new image pre-processing technique has been proposed to strip the skull region. Moreover, to evaluate the effect of classifier performance on tumor differentiation, different classifiers have been compared. According to detailed test results performed on 188 MR images, benign or malignant differentiation of brain tumors can be detected with 96.81% accuracy rate by proposed method. In the second method, a novel Artificial Immune System (AIS) based computer-aided diagnosis system has been proposed. This system utilizes MR Spectroscopy signals to make a decision about brain tumors. The system can perform differentiation of benign / malign, metastatic / primary, pseudo / normal tumors and grading of brain tumors with high accuracy rates. According to the experimental results performed on large dataset obtained from an international and multi-center project, the detection performance has been achieved 96.97%, 100%, 100%, 98.33% and 98.44% success rates respectively

    An automated classification system to determine malignant grades of brain tumour (glioma) in magnetic resonance images based on meta-trainable multiple classifier schemes

    Get PDF
    The accurate classification of malignant grades of brain tumours is crucial for therapeutic planning as it impacts on the tumour’s prognosis, where the higher the malignancy levels of the brain tumour are, the higher the mortality rate is. It is also essential to provide patients with appropriate clinical management that may prolong survival and improve their quality of life. Determining the malignant grade of a brain tumour is a critical challenge because different malignant grades of brain tumours, in some cases, have inconsistent and mixed morphological characteristics. Consequently, the visual diagnosis using only the naked eye is a very complex and challenging task. The most common type of brain tumour is glioma. According to the World Health Organisation, low-grade glioma, which includes grade I and grade II are the least malignant, slow growing, and respond well to treatment. While, high-grade gliomas, which include grade III and grade IV are extremely malignant, have a poor prognosis and may lead to a high mortality rate. Hence, the motivation to develop an automated classification system to predict the malignant grade of glioma is the aim of this research. To achieve this aim, several novel methods were developed and this includes new methods for the extraction of statistical measures, selection of the dominant predictors, and the fusion of multi-classification models. The integration of these stages generates an accurate and automated decision system to determine the malignant grade of glioma. The feature extraction starts from the viewpoint that the objective measure of the brain tumour descriptors in MR images lead to an accurate classification of malignant brain tumours. This work starts from the standpoint that meta-trainable fusion of multiple classifier models can offer a better classification accuracy to recognise the malignant grade of glioma in MR images. This study developed a novel strategy based on two stages of multiple classifier systems for glioma grades. In the first stage, different machine learning algorithms were used. In the second stage, a systematic trainable combiner was designed based on deep neural networks. This research was validated using four benchmark datasets of MR images, which are publicly available and confirmed with the histopathological diagnosis. The proposed system was also evaluated and compared against different traditional algorithms; the experimental results showed that the proposed system has successfully achieved better and optimal discrimination in glioma grades on all dataset
    corecore