14,302 research outputs found

    Sub-pixel Registration In Computational Imaging And Applications To Enhancement Of Maxillofacial Ct Data

    Get PDF
    In computational imaging, data acquired by sampling the same scene or object at different times or from different orientations result in images in different coordinate systems. Registration is a crucial step in order to be able to compare, integrate and fuse the data obtained from different measurements. Tomography is the method of imaging a single plane or slice of an object. A Computed Tomography (CT) scan, also known as a CAT scan (Computed Axial Tomography scan), is a Helical Tomography, which traditionally produces a 2D image of the structures in a thin section of the body. It uses X-ray, which is ionizing radiation. Although the actual dose is typically low, repeated scans should be limited. In dentistry, implant dentistry in specific, there is a need for 3D visualization of internal anatomy. The internal visualization is mainly based on CT scanning technologies. The most important technological advancement which dramatically enhanced the clinician\u27s ability to diagnose, treat, and plan dental implants has been the CT scan. Advanced 3D modeling and visualization techniques permit highly refined and accurate assessment of the CT scan data. However, in addition to imperfections of the instrument and the imaging process, it is not uncommon to encounter other unwanted artifacts in the form of bright regions, flares and erroneous pixels due to dental bridges, metal braces, etc. Currently, removing and cleaning up the data from acquisition backscattering imperfections and unwanted artifacts is performed manually, which is as good as the experience level of the technician. On the other hand the process is error prone, since the editing process needs to be performed image by image. We address some of these issues by proposing novel registration methods and using stonecast models of patient\u27s dental imprint as reference ground truth data. Stone-cast models were originally used by dentists to make complete or partial dentures. The CT scan of such stone-cast models can be used to automatically guide the cleaning of patients\u27 CT scans from defects or unwanted artifacts, and also as an automatic segmentation system for the outliers of the CT scan data without use of stone-cast models. Segmented data is subsequently used to clean the data from artifacts using a new proposed 3D inpainting approach

    Automated 3D segmentation and diameter measurement of the thoracic aorta on non-contrast enhanced CT

    Get PDF
    Objectives To develop and evaluate a fully automatic method to measure diameters of the ascending and descending aorta on non-ECG-gated, non-contrast computed tomography (CT) scans. Material and methods The method combines multi-atlas registration to obtain seed points, aorta centerline extraction, and an optimal surface segmentation approach to extract the aorta surface around the centerline. From the extracted 3D aorta segmentation, the diameter of the ascending and descending aorta was calculated at cross-sectional slices perpendicular to the extracted centerline, at the level of the pulmonary artery bifurcation, and at 1-cm intervals up to 3 cm above and below this level. Agreement with manual annotations was evaluated by dice similarity coefficient (DSC) for segmentation overlap, mean surface distance (MSD), and intra-class correlation (ICC) of diameters on 100 CT scans from a lung cancer screening trial. Repeatability of the diameter measurements was evaluated on 617 baseline-one year follow-up CT scan pairs. Results The agreement between manual and automatic segmentations was good with 0.95 ± 0.01 DSC and 0.56 ± 0.08 mm MSD. ICC between the diameters derived from manual and from automatic segmentations was 0.97, with the per-level ICC ranging from 0.87 to 0.94. An ICC of 0.98 for all measurements and per-level ICC ranging from 0.91 to 0.96 were obtained for repeatability. Conclusion This fully automatic method can assess diameters in the thoracic aorta reliably even in non-ECG-gated, non-contrast CT scans. This could be a promising tool to assess aorta dilatation in screening and in clinical practice

    Automatic Construction of Immobilisation Masks for use in Radiotherapy Treatment of Head-and-Neck Cancer

    Get PDF
    Current clinical practice for immobilisation for patients undergoing brain or head and neck radiotherapy is normally achieved using Perspex or thermoplastic shells that are moulded to patient anatomy during a visit to the mould room. The shells are “made to measure” and the methods currently employed to make them require patients to visit the mould room. The mould room visit can be depressing and some patients find this process particularly unpleasant. In some cases, as treatment progresses, the tumour may shrink and therefore there may be a need for a further mould room visits. With modern manufacturing and rapid prototyping comes the possibility of determining the shape of the shells from the CT-scan of the patient directly, alleviating the need for making physical moulds from the patients’ head. However, extracting such a surface model remains a challenge and is the focus of this thesis. The aim of the work in this thesis is to develop an automatic pipeline capable of creating physical models of immobilisation shells directly from CT scans. The work includes an investigation of a number of image segmentation techniques to segment the skin/air interface from CT images. To enable the developed pipeline to be quantitatively evaluated we compared the 3D model generated from the CT data to ground truth obtained by 3D laser scans of masks produced by the mould room in the frame of a clinical trial. This involved automatically removing image artefacts due to fixations from CT imagery, automatic alignment (registration) between two meshes, measuring the degree of similarity between two 3D volumes, and automatic approach to evaluate the accuracy of segmentation. This thesis has raised and addressed many challenges within this pipeline. We have examined and evaluated each stage of the pipeline separately. The outcomes of the pipeline as a whole are currently being evaluated by a clinical trial (IRAS ID:209119, REC Ref.:16/YH/0485). Early results from the trial indicate that the approach is viable
    corecore