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Abstract

Current clinical practice for immobilisation for patients undergoing brain or head and

neck radiotherapy is normally achieved using Perspex or thermoplastic shells that are

moulded to patient anatomy during a visit to the mould room. The shells are “made to

measure” and the methods currently employed to make them require patients to visit

the mould room. The mould room visit can be depressing and some patients find this

process particularly unpleasant. In some cases, as treatment progresses, the tumour

may shrink and therefore there may be a need for a further mould room visits. With

modern manufacturing and rapid prototyping comes the possibility of determining

the shape of the shells from the CT-scan of the patient directly, alleviating the need

for making physical moulds from the patients’ head.

However, extracting such a surface model remains a challenge and is the focus of

this thesis. The aim of the work in this thesis is to develop an automatic pipeline

capable of creating physical models of immobilisation shells directly from CT scans.

The work includes an investigation of a number of image segmentation techniques to

segment the skin/air interface from CT images. To enable the developed pipeline to

be quantitatively evaluated we compared the 3D model generated from the CT data

to ground truth obtained by 3D laser scans of masks produced by the mould room

in the frame of a clinical trial. This involved automatically removing image artefacts

due to fixations from CT imagery, automatic alignment (registration) between two

meshes, measuring the degree of similarity between two 3D volumes, and automatic

approach to evaluate the accuracy of segmentation.

This thesis has raised and addressed many challenges within this pipeline. We

have examined and evaluated each stage of the pipeline separately. The outcomes

of the pipeline as a whole are currently being evaluated by a clinical trial (IRAS

ID:209119, REC Ref.:16/YH/0485). Early results from the trial indicate that the

approach is viable.
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Chapter 1

Introduction

This chapter forms an introduction to this thesis in which we present the aims and

the motivations of the research in Section 1.1 and Section 1.2 respectively. It also

presents a brief overview on the current treatment pathway for patients requiring

head and neck radiotherapy in Section 1.3. Section 1.4 presents a general description

about our proposed treatment approach in which Head-and-Neck cancer patients are

no longer need to visit the mould room. Section 1.5 listed the contributions of this

thesis. Thesis organisation is presented in Section 1.6.

1.1 Research Aim

Radiotherapy is normally delivered in fractions over a period of time and patients need

to be carefully and consistently positioned during treatment to ensure tumours are

accurately targeted. Patients undergoing treatment of the head and neck are normally

immobilised by fitting a facial mask. Two types of facial masks (immobilisation

masks) are commonly used in hospitals nowadays for the purpose of immobilisation

[5]. The first one, see Figure 1.1, is the Polycarbonate or Perspex (hard plastic) mask

which is formed from a model created from a Plaster of Paris mould of the patient’s

face and in some cases extending to the neck and shoulders. Alternative soft plastic

immobilisation systems (thermoplastic), see Figure 1.2, require a plastic mesh to

1
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Figure 1.1: Examples of perspex shells.

Figure 1.2: Examples of thermoplastic shells.

be heated and draped over the patient’s face. Immobilisation masks are fitted by

radiotherapists and technicians during a mould room appointment scheduled before

treatment commences. Both approaches are invasive and some patients find the

mould room visit unpleasant and distressing. With modern advanced manufacturing

comes the possibility of automatically producing an immobilisation mask from a 3D

computer model built using CT scans. This non-invasive approach would improve

the patient experience, improve efficiency and save time.

Successful radiation therapy treatment outcomes rely on accurate targeting of can-

cerous tissue while minimising the dose to surrounding healthy organs. Consequently,

the process of immobilisation for head-and-neck cancer patients during the treatment

sessions is a big challenge. The core goal of this research is focused on demonstrating

that the model needed to construct a mask could be produced automatically from

the CT with similar accuracy as those currently made by the moulding process.
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1.2 Motivation

Head-and-Neck Cancer (HNC) refers to a group of different malignant tumors that

develop in or around the throat, larynx, nose, sinuses, and mouth [6]. Staging of the

cancer may be determined by medical imaging, biopsy and blood tests [7]. HNC is

the eighth most common cancer in the UK (2014), accounting for 3% of all new cases

[8]. Figures published from the United States estimate that 61,760 people developed

head and neck cancer in 2015 [9].

Acquiring CT data is necessary and indispensable step in treatment planning, and

so reusing these data to construct a 3D-printed model of the mask does not introduce

any additional steps to the treatment pathway. The existence of these data motivate

us to reuse it to produce a printed mask instead of looking for another additional

acquisition method that can produce a high quality 3D model. Consequently, this

research addresses the problem of how to create high quality models with smooth

iso-surfaces.

As stated in Section 1.1, immobilisation for HNC patients is currently accom-

plished through the use of perspex/thermoplastic shells. This process requires direct

moulding to the patient’s face and in some cases to the neck. Consequently, a visit to

the mould room is a prerequisite. The patient may have undergone previous surgery

to remove malignant tissue and taking the mould can be painful and is sometimes a

cause of distress. In some cases additional moulds are required as treatment progresses

and the tumour shrinks.

Many UK radiotherapy centres are currently using the Orfit soft-drape masks in

treatment sessions [10, 5]. Extended discussions have taken place between the research

group and radiologists and radiotherapist in Ipswich Hospital NHS Foundation Trust,

Suffolk, UK and St James’s University Hospital NHS Foundation Trust, Leeds, UK

in order to investigate the nature of the problem and to discuss deeply the feasibility
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of generating 3D printed shells for HNC patients. Those discussions and meetings as

well as other recent studies [5, 11] indicate that constructing 3D-printed masks for

HNC patients is worthy of further investigation. This research is motivated by many

challenges arising from the following points:

- The current perspex/thermoplastic shells used in radiation therapy cause distress,

anxiety, stress, pain and worry.

- The current process of producing shells is manually intensive, physically demanding,

and requires a dedicated facility (i.e. the mould room) and specialist staff [12].

- Visiting mould room and the moulding process itself are time consuming.

- The current process does not use digital data to store shell’s measurement and

features. So there is a need to store the shell itself for future comparison and conse-

quently this shortage of digital data complicates the comparative studies over time

[12].

- Since the recent developments in 3D printing indicate that this technique may

present a cheap and affordable choice in many industrial and medical applications,

it worth exploring the using of this technique in our research. It may present in the

future a cheaper choice than using the current perspex/thermoplastic shells.

- There is an increasing interest worldwide toward the development of new health-

care technologies and especially in the field of image guided planning for surgery and

radiotherapy to enhance precision/targeting. For example, one of the funding oppor-

tunities offered by the Engineering and Physical Sciences Research Council (EPSRC)

is: frontiers of physical intervention grand challenges. One of the specific impacts that

could be achieved under this grand challenge is “Advances in physics modelling and

image guided planning for surgery and radiotherapy to improve precision/targeting,

leading to fewer side-effects, faster recovery, and better outcomes” [13].

- The need for a high level of accuracy of radiation beams and the need for a precise
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immobilisation for the patient during the treatment session create a strong motivation

for us to focus on creating a 3D-printed immobilisation mask for HNC patients.

1.3 Radiotherapy Planning Process

A course of Radiotherapy Treatment is typically prescribed for patients diagnosed

with Head-and-Neck Cancer (HNC). It directs high energy ionising radiation to de-

stroy malignant cells, but it must be accurately targeted to limit harm to healthy

cells. A typical course of radiotherapy treatment for HNC is delivered in fractions

over several weeks and masks Figure 1.1 and Figure 1.2 are employed to ensure the

patient can be consistently repositioned for each dose fraction.

The radiation therapy process consists of various steps. It starts with data acqui-

sition using for example a CT scan. This is followed by treatment planning stages

including tumour localisation then treatment planning and beam positioning, and at

the end radiation delivery. Producing a 3D radiation treatment plan requires defin-

ing the target volume and organs at risk accurately, and these in turn require image

segmentation either manually or automatically as is clarified in the next paragraphs.

Radiation treatment is delivered in fractions, each session taking 15-30 minutes and

the whole process, from beginning to end, takes four to six weeks[14, 15].

Since radiation damages both healthy and malignant cells, precise positioning of

the patient prior and during the treatment sessions is a basic and important compo-

nent in achieving a successful outcome [16]. The dose given to surrounding healthy

tissues and ‘organs at risk’ which are particularly sensitive to radiation should be

minimised [17].

Tumour localisation, the accurate placement of radiation beams and the precise

calculation of dose distributions are of great importance in reducing side effects of

radiotherapy treatment [18]. In order to understand the nature of the radiotherapy
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planning process and to appreciate to what extent this process is critical we present

a brief description about these consecutive stages:

Stage1: Tumour localisation, identifying of target volume and organs at risk.

The radiotherapy planning process starts with the identifying of the location and

the form of the tumour. After that, the detecting of the target volume should take

place by identifying the volume which has to be totally covered by the therapeutic

dose. This stage involves the definition of tumour margins and safety margins which

are detected according to histology and the organs at risk. Errors and uncertainties

which are produced during this stage significantly impact the efficiency of treatment

planning and the result of the whole process [18].

Stage2: Modelling of anatomy and image segmentation.

In this phase, organs and tissues which will be irradiated have to be involved in the

treatment planning process. Moreover these tissue and organs have to be modelled in

three dimensions. The commonly approach used for extracting 3D information is the

manual segmentation of CT slices. Automatic or semi-automatic segmentation can

also be used since manual segmentation is time consuming, extremely tedious and

needs a great amount of efforts.

Stage3: Treatment design and dose calculation.

After finishing the delineation of anatomical structures and modelling of it in 3D, a

selection of the best directions from which to direct radiation beams at the target

volume is taken place. Numerous beams of radiation focused from different angles at

the target in order to allow for a better separation between the target volume and

the critical structures. The calculations of irradiation dose has three prerequisite [18]:

The precise patient geometry, the distribution of electron densities within the body,

and the physical beam characteristics of the irradiation units. The first and second

prerequisite (i.e. patient geometry and electron densities) can be acquired from CT
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Figure 1.3: The treatment process for HNC patients. The green blocks would replace
those shown in red if the mask was printed directly from the CT scan. The black
blocks belong to the common stages between the two approaches.

slices.

Stage4: Transfer of treatment to the patient

This is the final stage in which the settings that have been defined in the previous

stages are transferred to the patient during the treatment sessions.

Figure 1.3 illustrates the current patient treatment approach for Head-and-Neck

cancer in addition to our proposed treatment approach. The stages that are coloured

in black in the figure are common stages between the current treatment approach

and our approach. The red blocks belong to the current approach whereas the green

blocks belong to our proposed approach. Notice that most of the stages are common

between the two approach except that we replace the visit to the mould room with the

automatic construction of the mask using computer algorithms. Treatment of HNC

is slightly different from general cases of radiotherapy treatment since it involves a

mould room visit and because the CT planning scan is done with the patient wearing

the mask.
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1.4 Overview of our proposed treatment approach

We have presented in the previous section a general description about our proposed

treatment approach. In this section we present more scientific description of the main

phases of our proposed treatment approach. We mentioned that the current treatment

process requires direct moulding to patient anatomy. The proposed approach of

treatment enables the immobilisation masks to be obtained directly from the CT

data without requiring patients to visit the mould room. The phases of the proposed

approach are presented in Figure 1.4 in which the process starts by reading a stack

of CT images for those patients who have a Head-and-Neck cancer. This CT scan is

routinely performed on those patients as part of their radiotherapy planning process.

Then the image segmentation process takes place. The aim of the image segmentation

is to label pixels as belonging to the foreground or background. The details of the

image segmentation process is presented in Chapter 5. The foreground area, which

represents the region of the patient’s head, is then dilated (see Figure 1.4 (c)). The aim

of the dilation process is to gradually enlarge the boundaries of regions of foreground

pixels to form a representation of mask to be fitted around patient’s face.

A volume is constructed from those dilated images using the Marching Cubes

algorithm [19](see Figure 1.4). The digitally constructed model represents a larger

volume than the head itself. From that constructed model we extract the mask as

a mesh. This mesh is sent later to 3D printer to produce a physical immobilisation

mask. Notice that we just present in this section a general description about our

proposed approach to construct automatically radiotherapy treatment immobilisation

masks. In the next chapters we present all the details of the proposed approach and

the evaluation process.
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Figure 1.4: (a) A general schema represents our proposed treatment approach. (The
photo of the 3D-printing of the mask (f) is from [1]).

1.5 List of Contributions

This thesis makes the following contributions to enhance the treatment of HNC:

• It presents an automatic approach to generate a 3D model from which an immo-

bilisation mask can be constructed for use in radiotherapy treatment of Head-

and-Neck cancer using the CT volume currently acquired for treatment planning

purposes.

• It presents a novel, fast, and automatic approach to remove image artefacts due

to fixations (i.e. immobilisation masks as it is depicted in Figure 3.2 Chapter

3) in CT images with Particle Swarm Optimisation and without affecting pixel

values representing tissues.

• It investigates the use of five different segmentation techniques to segment the

air/skin boundary interface in CT images and evaluates the outcomes generated
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by each technique.

• It presents a customised version of the iterative closest point algorithm in or-

der to automatically align (register) two 3D meshes. This version exceeds the

conventional algorithm in terms of accuracy and speed.

• It presents an approach to 3D-overlap measurement for medical volumes. The

proposed approach does not just produce a figure-of-merit but it also gives

complementary statistical information that enables the observer to assess the

scale and positions of regions/volumes of match and mismatch.

• It presents a novel pipeline to automatically evaluate the accuracy of segmen-

tation of CT images when a laser-scan mesh is available as a ground-truth.

• It presents and evaluates the early outcome of a clinical trial (IRAS ID:209119,

REC Ref.:16/YH/0485) which is designed to provide data and a framework to

evaluate computer algorithms designed to construct immobilisation masks for

Head-and-Neck cancer patients.

1.6 Thesis Structure

The remainder of chapters of this thesis are organised as follows. Chapter 2 presents

background information on radiation therapy, common radiology imaging modalities,

laser scanners, 3D-printing, image segmentation and the common overlap measure-

ments which are used to evaluate the outcomes of image segmentation. Chapter 3

describes the procedures by which we evaluate the reliability of our work and the

data sets that have been used in this thesis. In Chapter 4 we present a fast and auto-

matic approach that removes image artefacts due to fixations in CT images which are

captured with the immobilisation mask fitted. The presented approach in Chapter 4
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prepares the CT data sets to be ready for automatic segmentation. This segmenta-

tion is investigated in Chapter 5 in which five segmentation techniques are applied

and evaluated.

Chapter 6 presents a customised version of the iterative closest point algorithm

that we develop to align between the CT-derived model and the ground-truth (laser-

scan model). Chapter 7 develops a 3D-overlap measurement for medical volume

images which will be used later to evaluate the accuracy of the constructed CT-derived

model when compared to the ground-truth. Chapter 8 introduces a novel pipeline to

be used to evaluate the accuracy of segmenting a CT volume by comparing to a 3D

ground-truth model acquired using a laser scanner. A pre-clinical trial is presented

to evaluate the reliability of the proposed pipeline. Chapter 9 presents the early

outcome of a clinical trial that we conduct to evaluate the reliability of the whole

system. Chapter 10 concludes this thesis and discusses the possibilities of future

work.



Chapter 2

Background

This chapter aims to present to the reader an overview of the process of Radiation

Therapy (RT) and a general description about the common radiology imaging modal-

ities such as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI).

In addition, an overview is presented on laser scanners and three-dimensional (3D)

printing and its applications in medical fields. The chapter ends by presenting an

overview of the image segmentation concepts and a description on the common over-

lap measures of labelled regions that are used to evaluate the outcomes of image

segmentation. Other literature and background information are presented in relevant

chapters to keep the transitions within chapters more simple and understandable.

2.1 Radiation Therapy (RT)

Radiation Therapy (RT) is the use of high-energy radiation from x-rays, gamma rays,

neutrons, and other sources to kill cancer cells [20]. X-rays used in radiation therapy

employ voltages between 6 MV and 20 MV [21]. Radiation therapy, also referred to

as radiotherapy, can be given either externally or internally. External radiotherapy

employs a large machine called a linear accelerator to direct high-energy X-rays at

the area requiring treatment whereas internal radiotherapy, known as brachytherapy,

uses a small piece of radioactive material placed inside the body near the cancerous

12
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cells or a radioactive liquid that is swallowed or injected.

There are three major methods used in treatment of cancer: Radiation therapy,

chemotherapy, and surgery. Contrary to other medical specializations that depend

principally on the clinical knowledge and experience of medical specialists, radiother-

apy, with its use of ionising radiation in treatment of cancer, depends on modern

technology and collaborative efforts of a number of professionals whose coordination

significantly affects the result of the treatment [22].

The radiation therapy process includes numerous phases. The main phases are:

data acquisition, typically using a CT scanner, tumour localisation, planning treat-

ment, and radiation delivery. As it known in Radiology, radiation damages both

healthy and malignant cells. Consequently, radiation should be oriented to the ma-

lignant cells precisely. Positioning the patient accurately is very important to get

successful outcome [16]. A precise procedure for patient positioning saves time and

reduces errors in targeting cancerous cells at the tumour site.

There are several different types of radiation therapy systems such as: Linear

accelerator, Tomotherapy and CyberKnife.

• Linear Accelerator (LINAC)

LINAC accelerator is the most commonly used radiation therapy system for

patients with cancer. It customizes high energy x-rays to be consistent with

a tumors shape and damage cancer cells while saving surrounding normal tis-

sue. It can be used for a stereotactic radiosurgery so it is used to treat all

parts/organs of the body [23].

• Tomotherapy

This system of radiation therapy merges the Intensity Modulated Radiation

Therapy (IMRT) delivery with an internal image guided system that uses a
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MegaVoltage computed tomography scanning (MVCT). It is capable of deliv-

ering IMRT by radiating tumours helically with a combination of the use of

sophisticated computer controlled radiation beam collimation and the use of

on-board CT scanner for treatment site imaging.

• CyberKnife

The CyberKnife is an image-guided frameless radiosurgery system. The system

involves primarily a robotic controller, an X-ray radiographic locating system

and a light weight 6 MV linear accelerator head [24].

Intensity Modulated Radiation Therapy (IMRT) is now the fundamental means

of delivering radiation to the tumour site in the correct dose and location without

influencing the surrounding healthy cells [25]. That is because in IMRT radiation

beams are shaped to be similar to the shape of tumour, and this allows a more

precise conformal radiation dose to be delivered to the tumour site [26]. The next

section will present an overview of the common radiology imaging modalities.

2.2 Common Radiology Imaging Modalities

This section presents an overview of some common imaging modalities used by on-

cologists to diagnose and treat disease.

X-ray imaging

In 1895, Rontgen published his initial results of using X-rays and since then X-ray

imaging has been used heavily in medical applications. The important reasons that

stand behind the widespread use of X-rays are the simplicity to be generated and

detected, and because it is still the cheapest choice for acquiring medical images [27].

In medical diagnostics, the used X-rays are generated by acceleration voltages chosen

between 25 kV and 150 kV, while those employed in radiation therapy use voltages
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between 6 MV and 20 MV [9]. X-ray imaging modality is considered the first modality

used in medical applications and it has been used to develop other medical imaging

techniques.

Computed Tomography (CT)

Godfrey Hounsfield, an English scientist, developed the process of Computed Tomog-

raphy (CT) in the early 1970s. CT images, or CT slices, are produced using X-rays.

The mechanism that CT imaging follow can be described as rebuilding a two dimen-

sional image slice using one dimensional X-ray projections that are acquired from

different angles [28] and then a three dimensional volume could be generated from

the resulting stack of two dimensional CT slices.

The idea of X-ray CT is to reconstruct a 2D image slice using 1D X-ray projections

that are acquired from different angles [28], and then stack the CT slices to reconstruct

a 3D volume. This volume could be used in several medical applications such as

medical diagnosis and the planning of surgical or radiotherapy treatment. This may,

in turn require image segmentation, surface rendering, image registration etc.

Since the 1970s, the means of acquiring CT images have been improved in numer-

ous generations of scanners. The basic aspects of differences between these generations

are:

- Geometry of the X-ray source

- Scanning configuration

- Scanning motions

- Detector arrangement

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) is a medical imaging technique used in radiology

to investigate the anatomy and physiology of the body. It uses a powerful magnetic
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field and radio waves to produce detailed images of the inside of the body. The

outcomes of an MRI scan is used to help plan treatments, diagnose conditions, and

evaluate the effectiveness of previous treatment. An MRI scan is a painless and safe

process since MRI scans do not implicate exposure to ionizing radiation.

MRI was developed in 1973 by Lauterbur and Mansfield. In MRI, the hydrogen

nuclei, which make up 80% of all atoms in the human body, are lined up as a nuclear

magnetised atoms by strong magnetic fields. After that, radio frequency fields are

used to change the alignment of the previous magnetised atoms. This produces mag-

netic signals from the hydrogen nuclei which are then detected by the MRI scanner

and rebuilt as an MRI image [29].

Laser scanners are used in our research to acquire surfaces to be used later as a

ground-truth in evaluation process. We present in the next section basic concepts of

laser scanning technology.

2.3 Three dimensional laser scanning

3D laser scanning is a non-contact technology that digitally acquires the shape of

real objects using a line of laser light. 3D laser scanners generate a point cloud

model of data from the surface of an object. The idea that stands behind the laser

scanner is that the scanner projects a line of laser light onto the surface while sensor

cameras continuously record the changing distance and shape of the laser line in three

dimensions as it sweeps along the object.

The term laser scanning is used with two connected, but separate concepts. The

first concept which was presented by Marshall et al. [30] refers to the controlled

deflection of laser beams, visible or invisible. These laser beams are employed in

used in different fields like their use for material processing, ceramic laser treatments,

laser printers, rapid prototyping, laser engraving machines, etc. The second concept
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which is of our interest in this thesis, often called 3D object laser scanning, refers to

the controlled steering of laser beams followed by a distance measurement at every

pointing direction in order to capture shapes of objects.

Laser scanner machines are common in industry and medicine as a non-invasive

method for producing a 3D digital surface models [31]. Physical anthropologists,

forensic scientists, and conservators used laser scanner machines to record, recreate,

and analyze objects and human remains, involving craniofacial features[32, 33, 34, 35,

36]. The laser surface scanner is considered by craniofacial investigators as one of the

most common types of surface data acquisition machine nowadays [37]. This tech-

nique provides an accurate and precise approach for identifying craniofacial surface

landmarks [31].

2.4 Three Dimensional Printing in Medical Appli-

cations

As our aim in this research is to construct 3D models of radiotherapy immobilisation

mask to be printed later using 3D printing technology, this section aims to present

general ideas about 3D printing and its applications in medical fields. 3D printing

is a process of creating 3D solid objects from a digital file where the construction of

a 3D printed object is achieved using additive processes in which an object is built

by laying down consecutive layers of material under computer control until the entire

object is created. These layers can be considered as a collection of lightly sliced

horizontal cross-section of the resultant object. According to the kind of production

method used, 3D printing is also named Rapid Prototyping (RP), solid free form or

layered manufacturing.
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Methods of Rapid Prototyping

Rapid Prototyping (RP) involves a number of established manufacturing techniques

and experimental technologies. Rengier et al. [38] presented an overview of estab-

lished rapid prototyping techniques used in the medical fields where Wendel et al.

[39] described in details some selective additive processing technologies. The current

common RP techniques are:

• Stereolithography technique (SLA)

SLA is a technology used for creating models and patterns in a layer by layer

fashion using photopolymerization. Photopolymerization is the process by which

a machine, called a stereolithograph apparatus (SLA), converts liquid plastic

into solid objects [40]. (e.g. 3DSYSTEMS company, Rock Hill, SC, USA,

http://www.3dsystems.com).

• Three-Dimensional printing techniques (3DP)

Inkjet printing (INK) techniques are the most common form of 3DP techniques.

These techniques are based on different kinds of fine powders such as plaster

or starch. An inkjet-like printing head goes across a bed of powder, deposit-

ing a liquid binding material in the shape of the section. After that, a new

layer of powder is spread across the top of the object, and the procedure is

repeated again. Unbound powder is automatically detached when the model is

complete [41]. (e.g. Z Corporation, Burlington, MA, USA which was acquired

by 3DSYSTEMS).

• Selective Laser Sintering (SLS)

SLS is an additive manufacturing technique that uses a laser as the power source

to sinter powdered material. In SLS, small particles of plastic, ceramic or glass

are fused together by heat to form a solid object. (e.g. EOS, GmbH, Munich,
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Table 2.1: Comparison between RP techniques (advantages)

Technique Good strength Low cost High speed Variety of materials Large part size
SLA X
3DP X X
SLS X X X

FDM X X
LOM X X

Table 2.2: Comparison between RP techniques (disadvantages)

Technique Moderate strength High cost Low speed Limited materials powdery surface
SLA X
3DP X
SLS X X

FDM X
LOM X

Germany, http://www.eos.info).

• Fused Deposition Modelling (FDM) Small beads of fused thermoplastic material

is extruded through a nozzle to lay down plastic according to slice information.

(e.g. Stratasys Inc., Eden Prairie, MN, USA, http://www.stratasys.com).

• Laminated Object Manufacturing (LOM)

This technique employs a laser cutter to shape layers of paper or plastic films

that are glued together. (e.g. Cubic Technologies, Torrance, CA, USA, http://

www.cubictechnologies.com).

Table 2.1 shows the important advantages for each one of the RP techniques where

Table 2.2 displays the basic disadvantage for each one. A comparison between the

five different techniques in terms of accuracy and cost are presented in Figure 2.1.

Notice that the attributes can change according to the specific printing system used.

As Figure 2.1 shows, the SLA technique has the highest accuracy among others

where the LOM and INK have the lowest. According to [39], the accuracy of SLA

reaches <0.05mm, followed by SLS which has accuracy in the range (0.05 - 0.1) mm.

The accuracy of FDM is closed to SLS such that the accuracy of FDM reaches 0.1

mm. LOM technique has low accuracy (0.15mm) comparing to others, where the
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Figure 2.1: A comparison between five different RP techniques in terms of accuracy
and cost.

accuracy of 3DP reaches, described using dots per inch (dpi) metric, 0.1/600 x 540

dpi. In terms of cost, it is difficult to supply exact numbers and figures because

the cost depends on the size and complexity of samples, but we can describe the

cost relatively. As displayed in Figure 2.1, SLS is the most expensive one, followed

by SLA, where the remaining techniques have closed values in terms of cost. The

following subsection presents some coomon applications of 3D printing and specially

in medical fields.

Applications of 3D Printing

Rapid prototyping has afforded new technologies that help in visualization of intri-

cate structures. It has been employed in different fields like: industry, biomedical

engineering, forensic science, education, customizable labware ([42], digital preser-

vation and study of cultural heritage artefacts (e.g. [43] 3D printing was used to

study the fine details of a Cantonese chess piece with complex internal structure),

space vehicles manufacturing (in [44] NASA explores the potential of 3D printing in

the development of the next generation space exploration vehicle) and many other

numerous applications.
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In addition to the numerous applications of rapid prototyping and 3D printing that

are mentioned above, they are also used in different medical applications. Using 3D

printing in medicine saves the time in most cases as well as reducing errors [45]. The

following list include some of the medical fields which benefit from the 3D printing

technology:

• It is used in prosthesis design [46, 47].

• It allows the production of a realistic, physical, understandable and true 3-D

object which are of useful clinical value (e.g. in [48] the 3D-printed model

provides a better understanding of a large osteochondroma arising from the

scapula).

• 3D-printed models aid surgeons, radiologists and junior trainees in their works

[49, 50].

• It makes the process of communication with patients easier [40].

• It helps plan surgical management [48].

• It is important for planning maxillofacial and craniofacial surgery [41, 51].

• It is used for neurosurgical procedures and repairing of skull defects. (e.g. [52]

used it to create an implant for the surgical reconstruction of a large cranial

defect).

• It used in orthopaedics diagnosis and for treating disorders of the spine [53],

pelvis [54] and shoulder. (e.g. in [55] the 3D printed model helped the surgeons

preoperatively decide the proper location for positioning of pedicle screws).

• 3D-printed models help in diagnosis and treatment of cardiovascular disease

[56, 57], (e.g. [58] used 3D-printed models to determine patients suitability for
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percutaneous pulmonary valve implantation).

• Producing phantoms for medical research [59].

Accurate segmentation of the CT slices leads to more accurate final outcomes in

our research. The following section presents an overview of images segmentation.

2.5 Image Segmentation

Image segmentation is the process of partitioning an image into multiple meaningful

segments (i.e. dividing into multiple regions) [60]. These regions correspond to differ-

ent objects or parts of objects. In medical imaging, these regions normally correspond

to different tissue classes, organs, or other biologically relevant structures [61]. As

image segmentation forms a basic part of the work in this thesis and since successful

segmentation of 2D CT image slices can significantly assist the next reconstruction

of a 3D model, we present in this section an overview on the image segmentation

concepts. There is no standard classification of the image segmentation algorithms

in literature. Algorithms are categorised in [62] in accordance with their primary

methodologies based on thresholds, clustering techniques and deformable models.

Image segmentation is one of the most important steps that should take place in the

treatment process in order to benefit from the medical images produced by the mod-

ern imaging modalities such as computed tomography (CT) and magnetic resonance

imaging (MRI).

Segmentation of medical images can be performed manually, automatically (com-

puterized) or using a combination of methods. Manual segmentation is time-consuming

comparing to automatic segmentation and the results may be prone to observer vari-

ability whereas using computer-aided segmentation techniques have significantly im-

proved the accuracy of the segmentation outcomes [63, 62].
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Many image segmentation algorithms use a threshold value as a basis for segmen-

tation. Thresholds can be chosen manually or automatically. Manual selection of

a threshold value requires prior information and occasionally trial experimentations

while automatic segmentation uses image information such as the image histogram

and pixel intensities to determine the threshold value automatically. The algorithms

that are categorised as thresholds-based algorithms can be classified as:

• Edge-based algorithms.

• Region-based algorithms.

• Hybrid algorithms.

Edge-based algorithms

The existence of edges represents an important features of images. Edges, in digital

image processing, represent a part of the image where the intensity of the image

local area changes greatly. In other words, edges represent points in an images where

brightness changes abruptly. Edges can be generally categorised into four types: step,

ramp, line and roof. A step edge, as shown in Figure 2.2(a), represents a complete

transition from one segment to another whereas a ramp edge, as in Figure 2.2(b),

represents a smoother transition between the two segments. A line edge represents two

edges in close proximity. See Figure 2.2(c) for illustration. Figure 2.2(d) and 2.2(e)

represent the two types of roof edges. Roof edges occur when two adjacent ramps

exist in an image. Edges are commonly present between objects and backgrounds,

objects and objects, primitives and primitives [64] (i.e. the primitive represent an

image element from which more complex images can be reconstructed such as line,

arc, etc.).

The general approach to detect edges in images is to investigate the change of

intensity level in an image as changes reflect discontinuities that separate parts in the
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(a)Step edge (b)Ramp edge (c) Line edge (d) Roof edge (e) Roof edge
(convex) (concave)

Figure 2.2: Edge types.

Figure 2.3: General description for edge-detection algorithms.

image. The general methodology of edge-detection algorithms is presented in Figure

2.3. The first step as shown in Figure 2.3 is to use an edge estimator to highlight

local edges in images. After that, a threshold value should be selected, manually or

automatically, depending on the strength of edges. The detected edge may not be

continuous due to several reasons such as noise etc., so some of algorithms try to

link edge points into lines by using some post-processing steps such as morphological

operations.

Edge detection algorithms are further categorized as static or dynamic. Static

algorithms use one threshold for the whole image while dynamic thresholding adjusts

the threshold depending on local information. Edge detection is the most common

method for identifying meaningful discontinuities in intensity values.

The following are the common approaches classified as edge-based algorithms:

Canny edge detection (presented in [65]); Sobel; Laplacian; Prewitt and Roberts.
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Region-based algorithms

The basic idea in this group of algorithms is to look for pixels that share similar

characteristics like intensity. One of the differences between the algorithms in this

group lies in their search strategy. The following are common algorithms classified as

region-based: Seeded region growing presented in [66] by Adams and Bischof, adap-

tive region growing presented in [67] by Pohle and Toennies, adaptive region growing

based on centerline estimation presented in [68] by Yi and Ra, a bayes-based region-

growing presented in [69] by Pan and Lu.

Hybrid algorithms

Watershed algorithms are typical examples of hybrid algorithms. The following is

some of the common algorithms classified as watershed algorithms: watershed algo-

rithm based on immersion simulations presented in [70] byVincent and Soille, im-

proved watershed transform using prior information presented in [71] by Grau et al,

using K-means clustering and improved watershed algorithm presented in [72] by

Ng et al, and watershed segmentation using prior shape and appearance knowledge

presented in [73] by Hamarneh and Li.

The process of image segmentation needs to be followed by evaluating the accuracy

of segmentation. Common measurements of overlapped regions used to evaluate the

accuracy of segmentation are presented in the next section.

2.6 Measures of Overlap of Labelled Regions

There are a number of measurements that are useful for evaluating results derived

from image segmentation algorithms. The two most popular measures of region over-

lap are the Tanimoto Coefficient (TC) and the Dice Similarity Coefficient (DSC) [74].

The following paragraphs presents the common measurements used to evaluate the

overlap of labelled regions.
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Tanimoto Coefficient (TC)

Tanimoto Coefficient (TC) [75] is a statistic used for comparing the similarity of two

sample sets. TC, also known as Jaccard Similarity [76], evaluates similarity between

finite sample sets through dividing the size of the intersection over the size of the

union of the sample sets as shown in Equation (2.6.1).

TC =
N(A ∩B)

N(A ∪B)
(2.6.1)

Where N() refers to the number of pixels in the enclosed set. A high value of TC

shows a well correspondence between the two sets. A value of one points to complete

correspondence where a value of zero indicates that there is no any correspondence.

Rogers and Tanimoto [77] presented the concept of similarity ration over bitmaps.

The definition of the Tanimoto similarity ratio over bitmaps is the number of joint

bits, divided by the number of nonzero-bits in either sample as shown in Equation

(2.6.2).

TSR(A,B) =

∑n
i (Ai ∧Bi)∑n
i (Ai ∨Bi)

(2.6.2)

Where TSR(A, B) refers to the Tanimoto similarity ratio, n refers to the total

number of bits in set A or set B (i.e. set A should contains the same number of

bits as set B), Ai represents the ith bit of A, ∧ and ∨ are bitwise logical ‘and’, ‘or’

operators respectively.

Equation (2.6.3) clarify how the calculation of TC is performed over two binary

images where G represents the ground truth image, S represents the segmented image,

gi represents the ith bit of G and si represents the ith bit of S.

TC(G,S) =

∑n
i (giXsi)∑n

i g
2
i +

∑n
i s

2
i −

∑n
i (giXsi)

(2.6.3)
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Dice Similarity Coefficient (DSC)

Dice Similarity Coefficient (DSC) [74] is a statistic used for comparing the similarity

of two sample sets. DSC is used as a spatial overlap index and a reproducibility

validation measurement [78]. If there are no spatial overlap between two sets of

binary segmentation, DSC takes a value of zero where it takes a value of one when

there are a complete overlap. Equation (7.3.2) displays how DSC is calculated.

TC =
2N(A ∩B)

N(A) +N(B)
(2.6.4)

Where N() refers to the number of pixels in the enclosed set. The definition of

the Dice similarity ratio over bitmaps is shown in Equation 2.6.5 .

DSR(A,B) =
2
∑n

i (Ai ∧Bi)∑n
i Ai +

∑n
i Bi

(2.6.5)

Hausdorff Distance (HD)

Hausdorff Distance (HD), named after Felix Hausdorff, is a measurement used to

measure how far two subsets of a metric space are from each other. HD represents

the greatest of all the distances from a point in one set to the closest point in the

other set. Given Equation 2.6.6 where ‖.‖ represents the Euclidean norm

h(A,B) = maxa∈Aminb∈B‖a− b‖ (2.6.6)

then Hausdorff distance is computed as shown in Equation 2.6.7 .

H(A,B) = max(h(A,B), h(B,A)) (2.6.7)

HD was used heavily in the literature and in many applications. It was used for

example [79] to measure the difference between two different representations of the
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same 3D object particularly for efficient display of complex 3D model.

2.7 Summary

This chapter presented some background information that is related to our work

in this thesis. It started by describing the radiation therapy treatment phases and

then several different types of radiation therapy systems were introduced. The X-

ray imaging, CT and MRI imaging systems were presented as these common medical

image modalities are related to our research. Moreover, basic concepts about 3D laser

scanning were discussed. The chapter also presented some discussion on different

applications of 3D printing in medical applications and the principal methods used

for rapid prototyping. An overview of basic concepts of image segmentation and the

common measures of overlap of labelled regions are presented in this chapter since

these measurements are used to assess the accuracy of image segmentation. The next

chapter presents the research workflow, a brief description of the evaluation pipeline

and the group of data sets which are employed in this research.



Chapter 3

Research Workflow

This chapter presents an overview of the progression of chapters presented later in

this thesis. It also describes generally the strategies and procedures by which we

evaluate the reliability of our work. Finally we present a description of the data sets

that have been used through the different stages of preparing this thesis.

3.1 Research Workflow

Evaluation of surface models built from Computed Tomography (CT) is of vital im-

portance to validate the outcomes of the segmentation and registration of medical

images. 3D models obtained through laser scanning have been used in numerous

studies as a ground-truth [80, 81, 82, 83, 84, 85, 86, 87, 88]. In a related context,

laser scanners were used in a few studies to verify the accuracy of 3D-printing models

of bones created from previously acquired CT-derived data [89, 90, 91]. Moreover, the

following studies recommended laser scanners to be used to provide a ground truth

for the model being acquired[92, 93, 94].

We evaluate the accuracy of surface models built from CT images by employing

laser-scan model as a ground-truth. Figure 3.1(a) represents a general pipeline that

we apply in order to evaluate models built from data acquired in pre-clinical and clin-

ical studies presented in chapters 8 and 9. For the clinical study patients undergoing

29
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(a) (b)

Figure 3.1: (a) A general schema represents the evaluation process in our study (b)
A schema points in which chapter each phase of the evaluation process is presented.

radiotherapy treatment for head and neck cancer at the Norfolk and Norwich Uni-

versity Hospital (NNUH) NHS Foundation Trust are recruited by the oncology team.

Treatment progresses normally and the CT planning data are acquired. Additional

data, captured by a hand held laser scanner are also gathered (see Chapter 9 for more

details about the clinical trial).

As we mentioned in Chapter 1 immobilisation masks are used to immobilise pa-

tients undergoing radiotherapy treatment for tumours affecting the head and neck.

Consequently the CT slices of those patients that are normally acquired within on-

cology departments include immobilisation masks (see Figure 3.2). Manually editing

the data to remove artefacts due to the mask is time consuming and error prone. This

challenge is addressed in this thesis in Chapter 4 and a fast and automatic approach

to edit the immobilisation mask in CT images is presented and evaluated.
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Figure 3.2: Example of CT slice which involves immobilisation mask.

After automatically removing the artefacts and preprocessing the CT images, the

head is segmented from successive CT slices. We tested five different segmentation

techniques for this purpose. The experimental work and the outcomes of the seg-

mentation process is presented in Chapter 5. We then use the Marching Cubes to

construct a 3D model of patient’s head. To avoid confusion, it is important here to

mention that there are some common steps between the evaluation pipeline process

presented in this chapter and the proposed treatment pipeline presented in Chapter

1.

As Figure 3.1(a) shows, The 3D-alignment between the laser-scan model and the

CT-derived model is one of the essential parts of this evaluation pipeline. The details

of the process that we follow to automatically align the two models are presented in

Chapter 6. The overlap measurements are calculated after our system aligns auto-

matically both of the 3D models. The overlap measurements produces readings that

determine to which degree is the overlap between the laser-scan model as a ground-

truth and the CT-derived model as an examined model. More details on the overlap

measurements are explained in Chapter 7.

The evaluation of different segmentation techniques is performed by applying each

segmentation technique over the stack of 2D images (see Figure 3.3). So the resultant
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Figure 3.3: Different segmentation techniques generate different CT models. Each
CT model is evaluated with regard to laser-scan model.

overlap measurement is considered as an evaluation of the accuracy of the applied

segmentation technique.

Figure 3.1(b) illustrates graphically the evaluation pipeline process and which

chapter covers each stage of this evaluation pipeline. A pre-clinical trial is presented

in Chapter 8 in which the evaluation pipeline was employed over some 3D printed

homogeneous objects. In Chapter 9 we present the details, experiments and outcomes

of our clinical trial (IRAS project ID:209119, REC reference:16/YH/048).

3.2 Data Sets

This section presents an overview on the different data sets that are used through

this thesis. The description, properties and sources of these data sets are tabulated

in Table 3.1.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3.4: The different data sets used in this study. (a), (b), (c), (d) and (e) display
surface meshes represent respectively real pelvis, real knee, plastic object in a shape
of nested cubes, plastic object in a shape of dome, and the Cantonese head. (f) and
(g) represent one CT image slice for two CT data sets of human head from TCIA. (h)
represents one CT image slice for one of the three data sets that we got from Leeds.
(i) represents the perspex mask and (j) represents the surface mesh of this mask.
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Table 3.1: Description of data sets used in this Thesis.

Name & Format Source Properties

Pelvis
STL file Able Software Corp (Lexington, USA) Mesh surface/ Pelvis File-size =750 KB (7625 vertices)

Knee
STL file The Biomedical 3D Printing Commu-

nity (embodi3D LLC)
Mesh surface/ Knee File-size =2665 KB (26651 ver-
tices)

Cubes, Dome
STL file + CT DI-
COM images

Ipswich Hospital NHS Foundation
Trust, Suffolk, UK

CT images (helical, pitch = 0.562:1, collimation
16x0.625 mm (10mm), 512 x 512 x 60 for the cubes,
512 x 512 x 129 for the dome). STL file-size of
cubes=6299 KB and of dome=155478 KB

Cantonese head
STL file + CT DI-
COM images

Combining X-Ray Micro-CT Technol-
ogy and 3D Printing project [43]

CT images (helical, pitch = 0.562:1, collimation
16x0.625 mm (10mm), 512 x 512 x 180). STL file-
size =849 KB

Head1, Head2
CT DICOM im-
ages

The Cancer Imaging Archive (TCIA):
a project funded by the National Can-
cer Institute

CT images (512x512x130, 512x512x156, pixel-spacing
1.08x1.08 mm 0.98x0.98 mm, slice-thickness 3.14 mm)

Head3, Head4, Head5
CT DICOM im-
ages

St James’s University Hospital NHS
Foundation Trust, Leeds, UK

CT images (512x512x155, 512x512x146, 512x512x151,
helical, pixel- spacing 1.367x1.367 mm, slice-thickness
2.5 mm)

Clinical Trial/Perspex Mask
STL file + CT DI-
COM images

Collaborative project (UK) between
the University of East Anglia, Univer-
sity Campus Suffolk and Norfolk and
Norwich University Hospital

CT images (512x512x90, helical, pixel-spacing
0.9765x0.9765 mm, slice-thickness 2.5 mm). STL
file-size = 6198 KB

The first dataset [95], shown in Figure 3.4(a), represents a surface produced from

pelvis CT images and saved in STereoLithography (STL) file format. The second

dataset [96], shown in Figure 3.4(b), represents a surface produced from knee CT

images and saved in STL format.

The third and the fourth data sets, shown in Figure 3.4 (c) and (d) respectively,

represent two plastic objects in a shape of nested cubes and dome (hemisphere). These

two objects were initially designed digitally with known dimensions and then printed

in the 3D-printing lab in Computing Sciences School at University of East Anglia.

The fifth data set, shown in Figure 3.4 (e), represents a 3D-printed scaled head of

a Cantonese chess piece that were delicately carved from ivory throughout the 19th

Century. This object was produced using a 3D printer by Laycock et al. [43]. CT data



CHAPTER 3. RESEARCH WORKFLOW 35

(a) (b) (c) (d) (e)

Figure 3.5: Plastic objects in a shape of (a) Cubes and (b) Dome. Examples of CT
image slices of (c) Cubes and (d) Dome. The hand-held laser scanner (Artec Space
SpiderTM from Artec 3D, Luxembourg) that we used to scan the plastic objects are
shown in (e).

sets of those three objects (i.e. cubes, dome, and the Cantonese head) were acquired

at Ipswich Hospital, UK. We also scanned these three objects using a hand-held laser

scanner (Artec Space SpiderTM laser scanner from Artec 3D, Luxembourg) for the

cubes and the dome, and (REVscanTM laser scanner from Handyscan 3D Creaform,

Canada) for the Cantonese head. We performed the laser-scanning for the cubes and

the dome in University Campus Suffolk, UK, and performed the laser-scanning for

the Cantonese head in a local company (Nexus training & resources for engineering,

Gt Yarmouth, Norfolk, UK [97]). Figure 3.5(a), (b) and (c) display photos for the

nested cubes, dome and the Cantonese head respectively. The two hand-held laser

scanners that we used to scan these three objects are shown in Figure 3.5(d) and (e).

Two other data sets (Head1 and Head2) were downloaded from the Cancer Imag-

ing Archive (TCIA)/Head-Neck-Cetuximab [98, 99]. These two data sets represent

stack of CT image slices for two subjects who have had CT scanning for their heads.

Examples of two CT images slices of those two humans are displayed in Figure 3.4

(f) and (g). We also used three other data sets (Head3, Head4 and Head5) form St

James’s University Hospital at Leeds, UK. These three data sets also represent stack

of CT images for three subjects. An examples of a CT image from those images is

displayed in Figure 3.4 (h). The eleventh dataset, shown in Figure 3.4 (i), represents
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Table 3.2: Showing in which chapter each data set is used.

Data Set Ch.4 Ch.5 Ch.6 Ch.7 Ch.8 Ch.9
Cubes X X X
Dome X X X
Cantonese X X
Pelvis X
Knee X
Head1 X X
Head2 X X
Head3 X
Head4 X
Head5 X
Clinical Trial X X

a Perspex mask of a patient who have a neck cancer. The CT scan of this patient

is gotten based on our registered clinical trial (IRAS project ID:209119, REC refer-

ence:16/YH/0485, Sponsor: University of East Anglia, Health Research Authority,

NHS, UK). We also had a laser-scan for the Perspex mask itself using a hand-held

laser scanner (Artec Space SpiderTM laser scanner from Artec 3D, Luxembourg).

Since each stage (and then each chapter) of the work plan has its own field and

evaluation procedure, we employed different data sets in this thesis. Table 3.2 shows

in which chapter each data set has been used. In Chapter 4 our aim was to validate

the accuracy of our approach to remove immobilisation masks from CT imagery

and then we used five different CT data sets (738 CT images) to run our approach.

The “Perspex Mask” data set is employed in Chapter 5 to evaluate the accuracy of

different segmentation techniques. In Chapter 6 we were interested in development of

an automatic approach to align 3D models and then we used three objects of which we

have different scans of different poses to prove the accuracy of the alignment approach.

The target of Chapter 7 is to develop and validate the reliability of a proposed model

for overlap measurements. This model accepts as inputs two surfaces, two volumes,

or one surface and one volume. Consequently we used different groups of data sets
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which represent surfaces and volumes. Our interest in Chapter 8 is to evaluate the

accuracy of our automatic pipeline over homogeneous objects for which we have two

scans (i.e. laser-scan and CT-scan). For that reason we run the experiments of this

chapter over the cubes, dome and the Cantonese head. The experimental works that

are displayed in Chapter 9 are run over the clinical trial data sets.

3.3 Summary

This chapter presented an overview of the chapters of this thesis. It described the

topics that have been covered in each chapter. The evaluation pipeline was also

described in this chapter since the main steps of this pipeline forms the core of the

next chapters. The description, properties and sources of the data sets which were

used in this thesis are presented in details. The next chapter presents the automatic

approach that we developed to remove artefacts in CT slices in order to be ready for

segmentation.



Chapter 4

Automatic Removal of
Immobilisation Masks from CT
Imagery with Particle Swarm
Optimisation

Radiotherapy planning CT data sets for those patients who have HNC are currently

captured with the immobilisation mask fitted. Manually editing the CT images to

remove artefacts due to the mask is time consuming and error prone. This chapter

presents a fast and automatic approach that removes image artefacts due to fixations

in CT images without affecting pixel values representing tissue. The proposed ap-

proach is tested on five CT data sets. The results show that the proposed approach

achieves an average specificity of 92.01% and sensitivity of 99.39%. We also present

results showing how fractional order Darwinian particle swarm optimisation has been

employed to speed up the process.

Section 4.1 provides an introduction to the artefacts in CT images due to the mask

for those patients who have Head-and-Neck Cancer. Section 4.2 presents a descrip-

tion on Particle Swarm Optimisation and its uses in medical image segmentation.

The proposed approach for the removal of immobilisation masks from CT images is

explained in Section 4.3. The experimental work performed to evaluate the approach

38
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is discussed in Section 4.4 and the results are presented in Section 4.5.

4.1 Introduction

CT data used for planning HNC radiotherapy treatment contain artefacts due to the

mask (see Figure 3.2 in Chapter 3) which can make planning more difficult and can

affect the process of constructing the volume from the CT images as it is required in

our research.

Segmentation of the brain, lateral ventricles, and skull are made more complicated

by artefacts due to the mask. For example [11] and [5] need to edit the CT images to

render a reconstructed 3D CT volume of the head. Removing the mask by manually

editing individual CT image slices, is time consuming and prone to errors particularly

in the regions where the mask contacts the skin. Development of a robust approach to

automatically remove the masks from the CT slices represents an appreciable saving

in time and avoids the possibility committing manual errors.

There are numerous studies related to the segmentation and identification of the

head/intra-cranial structures in the CT images [100, 101, 102, 103] but in our knowl-

edge, the study that is included in this chapter is the first to present a fully automatic

approach for removing CT image artefacts due a fixation mask. Our algorithm em-

ploys an extension of Otsu’s method [104], which classifies pixels as belonging to

one of many classes using multi-level thresholding. Exhaustive search for multiple

thresholds requires the evaluation of (n + 1)(D − n + 2)n combinations of thresh-

olds [105, 106] where n represents the number of thresholds and D represents the ab-

solute difference between the maximum and minimum image pixel value. Since pixel

intensities in DICOM images (Digital Imaging and COmmunications in Medicine)

are represented by 16-bit signed integers this can be very time consuming. The

range of values that DICOM images do normally have lies in [-1000, 3000]. So if
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we need, for example, to apply the exhaustive search (i.e.brute-force) method to

look for the optimal five thresholds that segment a DICOM image, then we need for

(5 + 1)(4000 − 5 + 2)5 = 6.1210 ∗ 1018 combinations of thresholds to be evaluated.

Taking into consideration that this evaluation of large number of combinations is re-

peated normally more than 100 times (since scanning human head using CT scanner

with normal resolution leads to produce a stack of CT slices of more than 100 images),

then this implies that the exhaustive search method will be absolutely undesirable in

terms of speed. To address this we test three optimisation techniques: Particle Swarm

Optimisation (PSO)[107], Darwinian Particle Swarm Optimisation (DPSO)[108] and

Fractional Darwinian Particle Swarm Optimisation (FDPSO) [109] in order to speed

up the segmentation process.

4.2 Background

Otsu’s Method

Otsu’s method [104] is a common approach in image segmentation field used to auto-

matically perform clustering-based image thresholding [110]. The basic assumption

of Otsu’s approach, as shown in Figure 4.1, is that the image contains two classes of

pixels (i.e. foreground pixels and background pixels). It then computes the optimum

threshold separating the two classes so that their inter-class variance (i.e. between-

class variance or the variance within the class) is maximal. An extension of the basic

assumption of Otsu’s method to multi-level thresholding, is presented in [111]. We

refer to this extension as multi-Otsu method.

Optimisation Techniques

Numerous artificial intelligence and machine learning algorithms have been widely

applied in image segmentation field to segment non-medical images (e.g. modified
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Figure 4.1: A chart represents the basic assumption of Otsu’s method.

bacterial foraging algorithm was used in [112], artificial bee colony in [113], Cuckoo

search algorithm and wind driven optimization in [114], particle swarm optimisation

based in [115], differential evolution in [116] and genetic algorithms in [117]).

Numerous studies have also applied the PSO, DPSO and FODPSO algorithms

on image segmentation (e.g. the authors of [118] applied those algorithms over hy-

perspectral remote sensing images which contain numerous number of data chan-

nels). In the context of medical images, there are a number of studies that ap-

plied the traditional form of the PSO algorithm to segment medical images (e.g

[119, 100, 120, 121, 122]).

PSO-based techniques

Particle swarm optimization (PSO) is a population based stochastic optimization

algorithm developed in 1995 [107] inspired by social behaviour of bird flocking or fish

schooling in search of food. It is basically initialized with a population of random

solutions and searches for optima by updating generations. The basic drawback of

the PSO algorithm is that there is a possibility, as other optimisation algorithms,

to be trapped in a local optima. Darwinian particle swarm optimization (DPSO)

introduced in 2005 [108] as an extension to the PSO algorithm by adding the natural

selection mechanism (i.e. survival of the fittest) to improve the ability of the PSO
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algorithm to escape from local optima. In DPSO, many parallel PSO algorithms,

each one forms a swarm, operate on the same search space. The fractional-order

Darwinian PSO (FODPSO) [109] algorithm was published in 2012 as an extension to

the DPSO algorithm. In the FODPSO, fractional calculus concepts are used in order

to control the convergence rate of the DPSO.

Particle Swarm Optimisation (PSO)

Particle swarm optimisation (PSO) algorithm is inspired in the way swarms act and

its elements move in a synchronized way. It is based on a population initialized with

a random solutions called particles. Each particle is distinguished by its own position

and velocity. Equations (4.2.1) and (4.2.2) describes how the velocity vid and position

Xid are updated at each iteration k. Each particle has a kind of memory which stores

the position where it had the lowest cost (Xpbestid), and the position of the best

particle in the population (Xgbestd).

Vid(k) = wvid(k − 1) + c1r1id(k)(Xpbestid −Xid) + c2r2id(k)(Xgbestd −Xid) (4.2.1)

Xid(k) = Xid(k − 1) + Vid(k) (4.2.2)

In equations (4.2.1) and (4.2.2), w represents the inertia weight, r1 and r2 are random

numbers with a uniform distribution in the range [0,1], and c1 and c2 are assigned

weights to the local and global best solutions respectively.

Algorithm 1 represents the basic steps that PSO algorithm follows until it reaches

the stopping criteria. It is obvious that the algorithm starts by initialising some

parameters for the swarm. Those parameters include the population-size, number-

of-iterations, c1(cognitive weight), c2(Social weight), w(Inertial factor), and Vmax and

Vmin to set the limits of velocities. After that, the algorithm iterates through all

particles to calculate the fitness function. Notice that the fitness function in this study

will be the inter-class variance between pixels intensities. Our aim is to search for the
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Algorithm 1 Steps of PSO Algorithm

Initialize parameters of particles;
repeat

forall particles do
calculate fitness f

end
forall particles do

update Vid(k) according to equation (4.2.1)
update Xid(k) according to equation (4.2.2)

end
t = t+ 1

until stopping condition;

threshold(s) that maximise this fitness value to global optima. The algorithm will

iterate again through all particles to update the value of the velocity Vid(k) and the

location of the new position Xid(k). Those iterations will be repeated until stopping

criteria happen. These criteria includes setting a maximum number of iterations or

stopping after executing a fixed number of iterations without giving any enhancement.

Darwinian Particle Swarm Optimisation Algorithm (DPSO)

A general problem with optimization algorithms is that of becoming trapped in a

local optimum. This leads a specific technique to work well on one problem but may

fail on another one. Tillett et.al. proposed an approach, named Darwinian PSO [108]

and based on natural selection, in which when a search have a tendency to a local

optimum, the search in that area is basically ignored and another area is searched

instead. More than one swarm exist in DPSO. Each swarm separately behaves like

a normal PSO algorithm with some rules controlling the group of swarms that are

intended to simulate natural selection.

Algorithm 2 displays the internal processes that are performed by the DPSO al-

gorithm. The algorithm starts by setting initial values in a collection of parameters.
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Those parameters include number of swarms, maximum and minimum possible num-

ber of swarms, maximum and minimum possible population size in addition to the

basic parameters of the traditional PSO. It is worthy to notice that the swarm in the

DPSO algorithm spawns (reproduce) a new particle if it finds a new global optimum,

and a particle is removed if the swarm has been unsuccessful in achieving a better

fitness in a fixed number of steps.

Algorithm 2 Steps of DPSO Algorithm

Initialize parameters of swarms;
repeat

forall swarms do
forall particles do

calculate fitness f
end
forall particles do

Update particle Bests
end
forall particles do

Move particle
end
if swarm gets better then

Reward swarm, spawn particle and extend swarm life
end
if swarm has not enhanced then

Delete particle and reduce swarm life
end

end
forall swarms do

Allow the swarm to spawn
end
Delete failed swarms

until stopping condition;

Fractional Order Darwinian Particle Swarm Optimisation Algorithm (FODPSO)

The name ‘fractional’ PSO derives from the use of fractional calculus. The frac-

tional calculus is a generalization of the ordinary differentiation and integration to
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non-integer order [123]. There are numerous uses of fractional calculus in physics,

mechanics, chemistry, computational mathematics and others. The basic idea that

stands behind the FODPSO algorithm is that this algorithm utilises the fractional

calculus concepts in order to control the convergence rate of the DPSO algorithm.

Those systems that comprise the using of fractional processes reveal residual mem-

ory and their fractional order is understood as a measure of the memory strength

[124, 125].

Equation 4.2.3 presents the Grunwald-Letnikov description based on the concept

of fractional differential of a general signal x(t):

Dα[x(t)] = lim
h→0

[
1

hα

+∞∑
k=0

(−1)kΓ(α + 1)x(t− kh)

Γ(k + 1)Γ(α− k + 1)

]
(4.2.3)

where Γ is the gamma function and α is the fractional coefficient such that α ∈ C.

It is worthy to notice that while an integer-order derivative is evaluated as an finite

series, the fractional-order derivative is evaluated as an infinite number of terms.

Consequently, integer-order derivative behaves like a local operator, while fractional-

order derivative behaves like a structure that has a memory of all past events [109].

4.3 The Proposed Approach

The basic steps of the proposed approach [126] are presented in Figure 4.2. The

algorithm applies FDPSO ‘slice-by-slice’ to segment the image to six different classes

under Otsu’s criterion. Section 4.4 explains that we found segmenting the image into

six different classes empirically classifies all or most of the pixels belonging to the

mask as one class. Algorithm 1 implements a heuristic search method to find pixels

in the labelled image that represent the immobilization mask and background.

Algorithm 1 further refines the output of the FODPSO segmentation. We assume

the top middle pixel represents the image background (air) and search the labeled
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Figure 4.2: Overview of the proposed approach.

image until we find a different pixel value (See the pixel in red square in Figure 4.3).

This pixel is assumed to belong to the class mask. Using these pixel labels we identify

sets of pixels {M} and {B} that represent the mask and background respectively.

Figure 4.4 illustrates that {M} and {B} sometimes include erroneous pixels be-

cause the FODPSO segmentation process groups these as one cluster. The sets {M}

and {B} contain pixels that are misclassified because the FDPSO algorithm only uses

intensity to cluster pixels. In our experiments, illustrated in Figure 4.4 we found that

the misclassified pixels are always located inside the skull. we correct this problem

by recovering the coordinates of those pixels located within the skull and excluding
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Algorithm 1 Finding the pixels that represent the immobilization mask and those
that represent the background pixels

1: height← height of image
2: width← width of image
3: mid col← the index of the middle column in the image
4: s← Get the segmented image.
5: for row ← 2, height do
6: if s (row, mid col) != s(1, mid col) then
7: v mask ← s (row, mid col)
8: v bg in CT img ← IMG(row − 1, mid col)
9: Break
10: end if
11: end for
12: indices of mask pixels(M)← find (s == v mask)
13: indices of bg pixels(B)← find (s == s(1, mid col))

these from {M} by a sequence of operations that split the original CT image to two

clusters (i.e. foreground(head) and background(air)) using Otsu’s method. We then

automatically flood-fill holes that may appear inside the skull using the morphological

reconstruction operator described in [127]. Subsequently we proceed by performing

an erosion [128] over the filled image. The aim of this process is to erode away the

boundaries of the skull thus areas of foreground pixels shrink in size. This will guar-

antee that none of the pixels that belong to the mask will be excluded later and

the only pixels that will be excluded are those which are exist inside the skull. The

index of those pixels which represent the skull are recovered from the eroded image

as {H}. Equations (4.3.1) and (4.3.2) identify the sets {M ′} and {B′} that exclude

those pixels within {M} and {B} that are also with the skull {H}.

M ′ = M − (M ∩H) (4.3.1)

B′ = B − (B ∩H) (4.3.2)
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Figure 4.3: A CT image in DICOM format and the same image after segmentation
using the FODPSO algorithm along with their pixel region tool.

4.4 Experimental Work

Data set

Five CT data sets from anonymized patients have been used in this study. The

first three data sets (512x512x155, 512x512x146, 512x512x151, helical, pixel-spacing

1.367x1.367 mm, slice-thickness 2.5 mm) were acquired at St James’s University Hos-

pital NHS Foundation Trust, Leeds, UK and the other two data sets (512x512x130,

512x512x156, pixel-spacing 1.08x1.08 mm 0.98x0.98 mm, slice-thickness 3.14 mm)

were downloaded from the Cancer Imaging Archive (TCIA)/Head-Neck-Cetuximab [98,

99].
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Figure 4.4: Examples of pixels mislabeled by FDPSO. Upper row: pixels mislabeled
as {M}; Lower row: pixels mislabeled as {B}.

Experiments

The experimental work in this chapter consists of two aspects. In the first aspect

we evaluate the PSO-based algorithms for medical image segmentation in terms of

speed, accuracy and stability of outcomes. In the second aspect, we evaluate the

performance of the automatic approach which is described in Section 4.3.

4.4.1 Evaluation of PSO-based algorithms

PSO-based algorithms need to define search space, candidate solutions and global

optima. In our case, the pixel intensities of the image will form the search space, the

possible threshold values (i.e. [min intensity, max intensity]) will form the candi-

date solutions, and maximising the interclass variance (i.e. Otsu criterion) will be our

global optimisation function. In addition to that, PSO-based algorithms need to ini-

tialise some parameters (e.g population size, number of swarms, ...). We chose these

empirically. Table 4.1 displays those values. The initial values of those parameters

were adjusted experimentally to lead for faster convergence. We found that there is no

significant influence on the CPU execution time and the fitness value when a slightly
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Table 4.1: Initial parameters of the PSO, DPSO and FODPSO algorithms

Parameter PSO DPSO FODPSO

Population size 180 35 35
Number of iterations 25 25 25
Cognitive weight 0.8 1.1 1.1
Social weight 0.8 0.9 0.9
Inertial factor 1.2 1.2 1.2
Vmax 3 3 3
Vmin -3 -3 -3
Number of swarms N/A 5 5
Max number of swarms N/A 7 7
Min number of swarms N/A 3 3
Max population size N/A 50 50
Min population size N/A 20 20
Stagnancy N/A 8 8
Fractional coefficient N/A N/A 0.8

change is made on the values of those parameters. However, we recommend using

those values for any future studies in the field of DICOM images segmentation since

we found those values are the most efficient values that speed up the convergence

rate.

Evaluating the accuracy of the PSO, DPSO and FODPSO is performed by mea-

suring the fitness (i.e. inter-class variance) for each algorithm and comparing the out-

puts with the brute-force (BF) method. BF method performs an exhaustive search

by evaluating the outcomes of all combinations of threshold values. The fitness in

this context refers to the inter-class variance between pixels intensities as it is pre-

sented in Section 4.2. Table 4.2 presents the average fitness values generated by the

PSO, DPSO and FODPSO algorithms against the fitness value generated by the BF

method. It is clear from Table 4.2 that FODPSO algorithm generates either exactly

the same or a slightly less fitness value compared to the BF method. This indicates

that applying the FODPSO algorithm for segmentation leads to a very high accurate

outcomes.
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Table 4.2: Average fitness values of Brute-Force, PSO, DPSO and FODPSO algo-
rithms for different number of thresholds over different five data sets

Dataset Thr. Brute-Force PSO DPSO FODPSO
Dataset#1 1 3269.09 3269.09 3269.09 3269.09
(155 images) 2 3773.38 3773.37 3773.38 3773.38

3 3829.39 3829.36 3829.38 3829.38
4 3855.43 3854.92 3855.25 3855.39
5 3871.88 3871.81 3871.72 3871.82

Dataset#2 1 3488.54 3488.49 3488.54 3488.54
(146 images) 2 4067.33 4067.21 4067.30 4067.30

3 4142.05 4141.87 4141.91 4142.02
4 4178.69 4178.11 4178.67 4178.67
5 4197.88 4197.09 4197.09 4197.86

Dataset#3 1 2374.66 2374.39 2374.54 2374.54
(151 images) 2 2635.29 2634.50 2634.88 2635.26

3 2657.87 2654.98 2655.29 2657.84
4 2679.31 2677.82 2679.19 2679.27
5 2688.69 2685.58 2686.44 2688.64

Dataset#4 1 3749.77 3749.77 3749.77 3749.77
(130 images) 2 4264.51 4264.01 4264.32 4264.51

3 4363.87 4363.12 4363.72 4363.86
4 4418.97 4417.99 4418.96 4418.96
5 4435.87 4431.89 4435.82 4435.85

Dataset#5 1 2870.42 2870.18 2870.42 2870.42
(156 images) 2 3386.32 3385.83 3386.12 3386.32

3 3462.11 3460.76 3460.76 3462.10
4 3516.13 3515.73 3516.08 3516.11
5 3535.57 3533.12 3534.84 3535.53

Table 4.3 displays the average CPU processing time that PSO, DPSO, FODPSO

and BF methods need to segment the whole images in each data set. The table con-

firms that the FODPSO algorithm is always slightly faster than the DPSO algorithm

and the DPSO algorithm is significantly faster than the PSO algorithm. It is worth

noting that the speed of BF search is similar to, but less than the speed of FODPSO

when the number of thresholds equals one. But as the number of thresholds increases,

the difference between the speed of BF and the speed of the other three optimisation
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algorithms becomes significant. In our case (i.e. removing artefacts due to immobi-

lization masks) we are interested in the case when the number of thresholds equals

5, and then the use of the FODPSO algorithm will make a significant enhancement

in terms of speed. We empirically found that segmenting the image into six different

classes (i.e 5 thresholds) classifies all or most of the pixels belonging to the mask as

one class and this interprets our interest in choosing the number 5 as the number of

thresholds. The fractional coefficient used in FODPSO allows the convergence rate

of the algorithm to be controlled and this explains why FODPSO outperforms the

DPSO algorithm.

The standard deviation was used as an evaluation measurement of stability. Table

4.4 shows that FODPSO produces the most stable results when compared to the PSO

and DPSO, and the standard deviation increases as the number of thresholds increase

in most cases. Typical results of segmentation using the FODPSO algorithm over one

sample image using different number of thresholds is shown in Figure 4.5.

1 threshold 2 thresholds 3 thresholds 4 thresholds 5 thresholds

Figure 4.5: Applying FODPSO using different number of thresholds.

4.4.2 Removal of the Immobilisation mask

Figure 4.6(a) displays an example of one of the CT slices from the first data set. A

previous study [106] evaluated the use of Particle Swarm Optimisation for medical

image segmentation and demonstrated the the FODPSO algorithm delivered high

accuracy, stability and speed. We found that segmenting the image to six different
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Table 4.3: Average execution time (in sec) of the Brute-Force, PSO, DPSO and
FODPSO algorithms for different number of thresholds over different five data sets

Dataset T.holds Brute-Force PSO DPSO FODPSO
Dataset#1 1 10.86 33.81 12.15 9.72

2 235.52 73.12 58.38 56.75
3 25951 90.85 74.90 72.53
4 2408545 111.01 90.04 86.82
5 > 1week 131.06 103.25 98.03

Dataset#2 1 7.28 20.95 8.37 6.96
2 221.46 65.56 53.39 50.27
3 24429 84.90 71.50 67.20
4 1709952 104.41 83.91 79.08
5 > 1week 123.61 97.84 93.42

Dataset#3 1 7.25 20.20 7.03 6.20
2 232.58 69.35 56.92 54.85
3 25118 88.02 70.82 66.54
4 1809433 107.73 86.51 82.36
5 > 1week 127.18 100.57 94.81

Dataset#4 1 8.06 16.15 8.51 7.97
2 195.84 58.54 47.82 46.69
3 21717 75.35 61.32 60.80
4 1908530 92.85 76.12 72.91
5 > 1week 109.67 86.73 84.16

Dataset#5 1 9.26 49.02 8.75 8.09
2 238.19 70.40 57.81 57.59
3 26148 90.99 76.13 72.12
4 2173860 111.82 90.04 84.29
5 > 1week 132.30 104.59 97.21

classes tends to lead to better results as this number classifies all or most of the pixels

belonging to the mask as one class. The FODPSO algorithm delivers significant

benefits in terms of execution speed over the BF approach (i.e. exhaustive search)

which takes a very long time when the number of clusters equals six. In Section 4.5

we tabulate the time required by the FODPSO algorithm against the time needed by

other techniques in order to segment the stack of CT slices comprising each data set.

Figure 4.6(b) displays the image after it was segmented to six different clusters using

the FODPSO algorithm.
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Table 4.4: Standard deviation of fitness for PSO, DPSO and FODPSO after running
each algorithm 15 times over different five data sets.

Dataset T.holds PSO DPSO FODPSO
Dataset#1 1 0 0 0

2 0.0001 0 0
3 0.0036 0.0003 0.0002
4 1.2873 0.0114 0.0105
5 0.0206 1.2195 0.0190

Dataset#2 1 0.0001 0 0
2 0.0009 0.0002 0.0001
3 0.0021 0.0005 0.0002
4 0.0122 0.0120 0.0113
5 0.0787 0.0342 0.0341

Dataset#3 1 0.0023 0.0001 0
2 0.0082 0.0009 0.0001
3 0.0810 0.0569 0.0015
4 0.0254 0.0143 0.0061
5 0.5932 0.5437 0.2903

Dataset#4 1 0.0011 0.0002 0
2 0.0008 0.0002 0.0001
3 0.0110 0.0089 0.0073
4 0.0196 0.0159 0.0161
5 1.7163 0.0938 0.0884

Dataset#5 1 0.0005 0.0003 0.0001
2 0.0012 0.0004 0.0001
3 0.0082 0.0027 0.0011
4 0.0243 0.0199 0.0190
5 1.3081 0.0373 0.0361

In Figure 4.6(c-e) we present the output that is generated by part-B of the pro-

posed approach. The image was firstly segmented to two classes (foreground and

background) using Otsu’s method. It was then filled automatically and eroded as it

displayed in 4.6(e). Part-A and part-B of the proposed approach produced three

data structures of indices (M , B, and H) and those indices were used to form the

final output image which is displayed in Figure 4.6(f). Finally, Figure 4.7 illustrates

randomly-selected input images and their outputs after applying the approach.
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(a) CT image (b)(FODPSO) (c)(Otsu)

(d) Filled (e) Eroded (f) Output

Figure 4.6: An example of a CT slice from the first dataset.

4.5 Results, Validation and Discussion

The Performance of the Approach

We used the Sensitivity and the Specificity to evaluate the proposed approach as

both of them are statistical measures of the performance of a binary classification

test. We have identified the True Positive Rate (TPR), False Positive Rate (FPR),

True Negative Rate (TNR) and False Negative Rate (FNR) in this context as:

• TPR: percentage of mask pixels correctly identified as mask.

• FPR: percentage of not-a-mask pixels incorrectly identified as mask.

• TNR: percentage of not-a-mask pixels correctly identified as not-a-mask.

• FNR: percentage of mask pixels incorrectly identified as not-a-mask.

The pixels that represent the immobilisation mask were identified by an expert in

25 CT images (5 randomly-selected from each dataset) and compared to the num-

ber of pixels identified by the proposed approach. Table 4.5 displays the average

values, rounded to the whole number, of TP, FP, TN and FN for each dataset and
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(a) In D2 (b) Out D2 (c) In D3 (d) Out D3

(e) In D4 (f) out D4 (g) In D5 (h) Out D5

Figure 4.7: One CT slice example from each dataset (Input & Output).

the percentage values of TPR, TNR, FPR and FNR. Table 4.6 displays the sensitiv-

ity, also called the true positive rate (TPR), specificity (SPC) and the Number-Of-

Observations (NOO) for each dataset.

Table 4.5: The average values of TP, FP, TN, FN, TPR, FPR, TNR and FNR for
each dataset

Dataset TP TN FP FN TPR FPR TNR FNR
Dataset#1 389 30,239 100 23 94.41% 99.67% 0.33% 5.59%
Dataset#2 403 30,152 154 42 90.56 % 99.49% 0.51% 9.44%
Dataset#3 429 30,199 93 30 93.64% 99.69% 0.31% 6.54%
Dataset#4 1714 29,060 465 203 89.41% 98.42% 1.58% 10.59%
Dataset#5 841 45,371 148 71 92.21% 99.67% 0.33% 7.79%

As is shown in Table 4.6 the average value of the sensitivity (TPR) is 92.01%

which indicates to the proportion of positives that are correctly identified (i.e. the

percentage of mask pixels which are correctly identified by the proposed approach as

mask pixels) and the average value of the specificity (SPC) is 99.39% which points

to the proportion of negatives that are correctly identified (i.e. the percentage of

not-a-mask pixels who are correctly identified as not-a-mask pixels). The heading

’NOO’ in the table indicates to the number of observations which is equivalent to the
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Table 4.6: The values of TPR, SPC, and NOO for each dataset

Dataset TPR SPC NOO
Dataset#1 0.9441 0.9967 30751
Dataset#2 0.9056 0.9949 30751
Dataset#3 0.9346 0.9969 30751
Dataset#4 0.8941 0.9842 31442
Dataset#5 0.9221 0.9967 46431
Average 0.9201 0.9939 34,025

number of pixels in each image.

Handling Exceptions

We applied our approach over five different data sets (total= 738 images) and noticed

that the approach did not work on 13 images of them for two reasons. Firstly some CT

images include a noise in the middle column on the top of the mask itself, as displayed

in Figure 4.8-left and secondly some CT images have disconnected representation of

the mask pixels, as displayed in Figure 4.8-middle. We handled the first exception

by applying the median filter over the background area in order to remove the noise

from the background area, and we handled the second exception by changing the

seeking mechanism in Algorithm 1 by searching the segmented image horizontally

and vertically from different five start points as displayed in Figure 4.8-right.

Figure 4.8: (left) Example of a CT image includes a noise in the middle col-
umn (Middle) A CT image has a disconnected representation of the mask pixels
(Right) Defining new start points to seek horizontally.
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4.6 Summary

This chapter presented an automatic approach for segmenting immobilization masks

in Head-and-Neck CT data sets. The approach identifies the pixels that belong to

the immobilization mask and replaces their intensity value with that of air, thereby

eliminating the mask from the output image. Five different data sets were tested

to evaluate the accuracy of the approach. Sensitivity and specificity were used as

statistical measures of the performance of the approach in this chapter. The eval-

uation indicates that the proposed approach is robust and of practical use. Some

enhancements to speed up the process using Particle Swarm Optimisation were also

presented and tested in the chapter.

Since this chapter presented an approach that removes the fixation and prepares

the CT slices for the segmentation process, the next chapter presents the different

segmentation techniques that were investigated to segment the CT images before

constructing a 3D volume of the head.



Chapter 5

Image Segmentation

This chapter presents the part of the thesis which addresses image segmentation.

The chapter begins by presenting in Section 5.1 a brief overview on five different

segmentation techniques which are employed in this research to segment the CT

images. Section 5.2 illustrates the steps that we developed within the framework of

Distance Regularized Level Set Evolution (DRLSE) to set the initial level set binary

function and to handle the case when more than one contour is found in the final

output image. The experimental work is presented in Section 5.3 and the results in

Section 5.4 include the outcomes after applying the five segmentation techniques over

our dataset. Section 5.5 draws a conclusion for this chapter.

5.1 Technical Background

We have presented in Chapter 2 an overview on the basic concepts of image segmen-

tation and we present in this section a brief overview over the five image segmentation

techniques that are employed in this research. The five segmentation techniques that

we applied and run over our data sets are: Otsu, K-means, Expectaion Maximization,

Hidden Markov Random Field Model with Expectation-Maximization, and Distance

Regularized Level Set Evolution. We have chosen these techniques since they are

common image segmentation techniques, widely accepted and tested, and have been
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successfully employed for medical image segmentation. In addition to that, since

image segmentation techniques are normally categorised in accordance with their

primary methodologies based on (1) thresholds, (2) clustering techniques and (3) de-

formable models [62] then these five techniques represent representative sample for

the three main categories of segmentation techniques.

5.1.1 Otsu’s method

Otsu’s method [104] is a common method in image segmentation which selects the

threshold to minimise the inter-class variance of the foreground and background pix-

els. It comprises iterating through all the possible threshold values. The details of

this method were presented in Chapter 4 Section 4.2.

5.1.2 K-Means

The term “K-means” was first used in 1967 [129]. Image segmentation using the

K-means approach is one of the common examples of the state-of-the-art clustering

methods for image segmentation [130] and it is used in different applications including

medical image segmentation [131, 132, 133, 134, 135]. The aim of the K-means

approach is to partition n observations into m clusters in which each observation

belongs to the cluster with the nearest mean. In the context of image segmentation,

the K-means takes an n of pixel values (x1, x2, ..., xn) and partition these pixels

into m sets S = {S1, S2, ..., Sm} in order to minimise the within-set sum of squares

(wsss) as shown in Equation (5.1.1).

wsss =
m∑
i=1

∑
x∈Si

‖ x− µi ‖2 (5.1.1)

where µi is the mean of pixel values in set Si. Notice that m equals 2 in the case

of binary image segmentation since we have just two sets (i.e. black and white).
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In this case, consider cm is the centre of cluster and p(x, y) is an input pixel. The

K-means algorithm for binary image segmentation is described as follows:

1. Set m = 2.

2. Initialize the centroids for each cluster with random intensities.

3. For each pixel in the image, calculate the distance d of their intensities from

the centroid intensities as shown in Equation (5.1.2)

d =‖ p(x, y)− cm ‖ (5.1.2)

4. Assign all the pixels to the nearest centre based on distance d.

5. Update the new positions of the centres as shown in Equation (5.1.3)

cm =
1

m

∑
x∈cm

∑
y∈cm

p(x, y) (5.1.3)

6. Repeat from step 3 to 5 for specific number of iterations or until the difference

satisfies a threshold value.

The next subsection presents an overview of another algorithm employed in image

segmentation named Expectation Maximization.

5.1.3 Expectation-Maximization (EM)

The Expectation-Maximization (EM) algorithm presents an intuitive iterative pa-

rameter estimation scheme. It relies on finding the maximum likelihood estimates

of parameters. Each iteration of the EM algorithm involves two procedures: max-

imization and expectation. In this approach, alternating steps of expectation and

maximization are executed iteratively until convergence [131]. The maximization

computes the maximum likelihood estimates by maximizing the expected likelihood
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detected on the last expectation step and the parameters detected on the maximiza-

tion step are then used to initiate another expectation step [136]. The EM algorithm

was explained and named in [137]. This algorithm has been employed in image seg-

mentation in different studies [138, 139, 140, 141, 142]. A very detailed description

of the EM algorithm is presented in [143, 144].

5.1.4 Hidden Markov Random Field Model and Expectation-
Maximization (HMRF-EM)

Markov Random Field Models (MRFM) have been used for image segmentation in

different studies [145, 146, 147] by incorporating the spatial relationships among

neighbouring labels as a Markovian prior [148]. The Hidden Markov Random Field

with Expectation Maximization (HMRF-EM) approach was first presented in [149]

in which the authors incorporated the HMRF and the EM approaches into a unified

framework. In this framework the likelihood probability parameters are estimated

through the EM algorithm [150].

The algorithm can be described as follows. Suppose that we have an image M

consisting of n pixels (m1, m2,..., mn) where mi represents the intensity of pixel i.

The target of HMRF-EM is to infer a configuration of the set of all possible labels L

= (l1, l2,..., ln) where li ∈ L by seeking the labelling L∗ as shown in Equation (5.1.4)

L∗ = P (M | L, ϑ)P (L) (5.1.4)

where the joint likelihood probability is shown in Equation (5.1.5)

P (M | L, ϑ) =
∏
i

P (Mi | Li, θLi
) (5.1.5)

where P (Mi | Li, θLi
) is a Gaussian distribution function and θLi

= (µLi
, σLi

). Notice

that ϑ = {θl | l ∈ L} is the parameter set that is found by the EM algorithm.
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HMRF-EM has been employed in image segmentation in different studies [141,

151, 152, 153, 154, 155].

5.1.5 Distance Regularized Level Set Evolution (DRLSE)

The level set method was introduced by Osher and Sethian [156]. In the level set

method the interface is described by the zero level set [157]. It works by representing

a contour as the zero level set of a higher dimensional function, called a level set

function (LSF), and formulating the motion of the contour as the evolution of the

level set function [2]. The level set framework is now used on a numerous applications,

including capturing moving fronts [158], image segmentation [159, 160, 161, 162],

image reconstruction [163], moving liquid interfaces [164, 165], image analysis [166],

reservoir simulations [167], optimal shape design [168], and computer vision [169].

The details of employing the conventional level set method in the field of image

segmentation and active contour models are presented in [170, 169, 171].

The Distance Regularized Level Set Evolution (DRLSE)[2] is a new variational

level set form in which the regularity of the LSF is preserved through the evolution

process. The derived level set evolution has a unique Forward-And-Backward (FAB)

diffusion effect to preserve a desired shape of the LSF. The diagram in Figure 5.1

displays the problems that normally accompany the conventional level set formulation

and how the DRLSE technique overcomes these problems.

It is obvious from Figure 5.1 that irregularities is the main drawback that hap-

pens during the evolution of conventional level set formulation. The concept of the

irregularity in this context is illustrated in Figure 5.2 in which Figure 5.2(a) displays

a level set function (LSF) which developed irregularities during its evolution. The

LSF evolution in this figure constantly degrades the LSF to a function with unde-

sirable irregularities (i.e. very steep shape in some regions and very flat shape in
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Figure 5.1: A schema represents the problems and drawbacks accompanying the
conventional level set formulation (left part) and the reasons that make the DRLSE
able to overcome these problems (right part).

other regions). Figure 5.2(b) displays a level set function which applied the DRLSE

in its evolution to preserve the regularity through its evolution. The irregularity may

lead to numerical errors and destroy the stability of level set evolution. However, the

typical treatment for the irregularities problem is the use of the reinitialization. Al-

though the reinitialization is able to replace the degraded LSF with a signed distance

function, but there are some drawbacks produced by performing the reinitialization.

The drawbacks of the reinitialization include possible wrong movement of the zero
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(a) (b)

Figure 5.2: Level set function which (a) develops irregularity through its evolution
and (b) another level set function in which the regularity is preserved during the
evolution (imported from [2]).

level set away from the anticipated position and defining numerical precision in an

undesirable way.

On the other hand, the derived level set evolution in DRLSE technique has a

unique FAB diffusion effect. Hence, the DRLSE has a number of advantages:

• It eliminates the need for reinitialization and then it avoids all of the reinitial-

ization’s drawbacks.

• It accepts the employment of more general initialization of the LSF.

• It can be implemented with more efficient difference scheme.

• It can use large time steps to reduce the number of iterations and computation

time.

The authors of the DRLSE technique have applied it to an edge-based active

contour model for image segmentation and proved its efficiency and accuracy. They

have used this technique to segment a CT image with a tumor in human liver and

to segment MR image of a human bladder. The active contour model in the DRLSE
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permit the employment of large time steps to reduce iteration numbers and computa-

tion time while preserving the numerical accuracy to a very great degree. Giving that

the active contour models including conventional level set method are not designed

to process large amounts of data [172], then the enhancement on the computation

time that is offered by the DRLSE will be an important feature.

5.2 Our Customisation/Handling of the DRLSE

Technique

Applying the DRLSE technique requires to set the initial level set binary function in

accordance with your specific application. In addition to that it is possible to have

more than one contour as a final output when applying the DRLSE. We present in

this section the procedure that we follow to set the initial level set binary function

and illustrate the algorithm that we develop to handle the multi-contour case.

5.2.1 Setting the Initial Level Set Binary Function

As the DRLSE technique requires the use of an initial LSF, we present a procedure to

derive the initial LSF to be used in the context of segmentation. The procedure that

we follow to set the initial LSF is illustrated in Figure 5.3. This procedure allows the

Region R0 to be close to the region to be segmented where R0 represents the region

which surrounds the object to be segmented by an initial contour. Consequently a

small number of iterations are required to move the zero level set to the desired border

of the object.

The process of deriving the initial LSF starts, as illustrated in Figure 5.3, by

reading the CT image and applying Otsu method over that image. Notice that

the segmented image is stored as temporary image. Automatic image filling is then

performed over the temporary image and followed by dilation process to allow the
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Figure 5.3: A schema showing the procedure that we follow to derive the initial level
set binary function.
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boundary of object to expand. The borders of the temporary image is then extracted

to form the initial LSF for the CT image (see the red contour around the head in the

bottom image in Figure 5.3.

5.2.2 Handling the Multi-Contour Case

The DRLSE technique may lead to produce more than one contour during its evolu-

tion (See Figure 5.4). We present here Algorithm 2 in which we develop a procedure

to deal with the case of more than one contour in the final output of the DRLSE tech-

nique. The structure of ContourMatrix in Algorithm 2 is illustrated in Figure 5.5.

As it is shown in the figure, the data structure ContourMatrix represents a two-row

matrix. The element that lies in first column and second row represents the number

of vertices that form the contour line. The remaining columns represent the vertices

itself for the contour line. In the case of multi-contour the ContourMatrix contains a

separate definition for each contour line. Fox example, the ContourMatrix in Figure

5.5 indicates that there are four contour lines. The dotted red circles show the starts

of each one of the contour line definitions. The first contour consists of four vertices,

the second of three vertices, the third of ninety-five vertices and the last of three

vertices. Algorithm 2 is employed when we find that the ContourMatrix consists of

more than one contour line. The basic operation of this algorithm is to search for the

start location of the largest contour line (i.e. the one that has the maximum number

of points) and extract the vertices that belong to that contour. This operation is

performed in the algorithm through the while loop (line 5 - line 12) by getting the

element that lies in first column and second row and storing it in max size. After

that, the algorithm repeatedly skips a number of elements equals to the value of

size of current contour and compares the value of the new size of current contour
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Figure 5.4: Examples of images that have more than one contour.

Figure 5.5: Structure of Contour Matrix.

with the value of the max size until it reaches the end of ContourMatrix. The al-

gorithm then continues by setting on the pixels which lie inside the largest contour

and return the final result as a segmented image consisting of ones and zeros.

5.3 Experiments

The experiments in this chapter are performed over the “Perspex Mask” data set

which is a part of the data sets of our clinical trial (IRAS project ID:209119, REC

reference:16/YH/0485, Sponsor: University of East Anglia, Health Research Author-

ity, NHS, UK). The details of this data set is presented in Chapter 3.

Although a large concentration has been given to propose new segmentation tech-

niques in the literature, a slight interest given to derive a uniform framework to be

used in comparing different segmentation approaches and evaluate their performance
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Algorithm 2 Handling multi-contour when the DRLSE technique is used in segmen-
tation

1: loc← 1
2: max size← 0
3: size of current contour ← 0
4: start← 0
5: while loc <(No. of columns of ContourMatrix) do
6: size of current contour ← ContourMatrix(2, loc)
7: if size of current contour > max size then
8: max size ← size of current contour
9: start ← loc
10: end if
11: loc ← loc + size of current contour + 1
12: end while
13: for i← 1,max size do
14: FinalContour(ContourMatrix(2, start+ i), ContourMatrix(1, start+ i))=1
15: end for

[173]. Accuracy of a segmentation algorithm can be defined as the level to which

the segmentation outcomes agree with the ground truth, a so called ”gold standard”

[174]. In the case when dealing with images of real patients, the ground truth is con-

sidered not known. There are some choices that can be considered as a replacement

or a substitution for the ground truth [175]. These choices include, but not limited to,

using the laser-scan mesh, using manual segmentation by experts, different imaging

modality, or another segmentation algorithm known to give accurate outcomes. We

employed in our clinical trial the laser-scan mesh as a ground-truth.

The schema that is presented in Figure 5.6 illustrates the procedure that we

follow to evaluate the accuracy of each segmentation technique (i.e. evaluate the

the similarity ratio between the laser-scan model as a ground-truth and the outcome

of each one of the five segmentation techniques). For each one of the segmentation

techniques, the stack of CT slices (in DICOM format) is read and segmented. After

that a 3D model is constructed from these segmented slices using Marching Cubes

algorithm [19]. The laser-scan 3D model, which represents the ground-truth, is then
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Figure 5.6: A schema illustrates the procedure that we follow to evaluate the accuracy
of the five segmentation techniques.

automatically aligned with the CT-derived 3D model. The details of the process

of alignment are presented in Chapter 6. The aligned laser-model is then sliced in

z− direction as it is presented in details in Chapter 7. At that point the slices image

resulted from the slicing process for the laser-scan model and the segmented CT

slices are automatically filled and compared. The comparison is performed between

each segmented filled CT slice and its corresponding filled laser image slice. The

overlap measurement that we used is Dice similarity coefficient (DSC) [74] which

finds the similarity ratio between each corresponding slices from each model. The

average similarity ratio is then calculated to represent the final outcome. It is worth

mentioning here that the details of the procedure illustrated in Figure 5.6 are clarified

and tested in detail in Chapter 6, Chapter 7 and Chapter 8.

5.4 Results

The stack of CT slices which represent the head of the patient are segmented five

times each time by one of the segmentation techniques that are mentioned before.
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Figure 5.7 displays random segmented CT slices generated when applying the Otsu,

K-means, EM, DRLSE, and HMRF-EM segmentation techniques to segment the CT

slices of the “Perspex Mask” data set. The figure also displays the slices that are

generated from the laser-mesh and used as a ground-truth. The techniques display

the pixels which belong to the background in black colour and the pixels which belong

to the object in white colour. It is clear from the figure that the EM algorithm does

not identify well, in some images, the foreground and background pixels. This will

lead later to construct the 3D model of the head in an incorrect way. Figure 5.8

displays three random slices that are generated when we sliced the laser-scan mesh.

The constructed models that are generated from each group of segmented images are

displayed in Figure 5.9.

Table 5.1 displays, for each segmentation technique, the average similarity ratio

between the segmented CT slices and the slices obtained from the ground-truth (i.e.

laser-scan mesh). Notice that the exact details of the procedure that we follow to

obtain these readings are presented in the next three chapters. We present these read-

ings here to give a perception about the performance of each one of the segmentation

techniques.

Exploring the values in Table 5.1 leads to a number of observations. The first one

is that the DRLSE technique exceeds the other four techniques in terms of accuracy.

This is obvious from the table since the value of the calculated average similarity ratio

for the DRLSE technique is the highest one. This in turn makes the DRLSE technique

a good candidate to be used for segmentation of CT slices for those patients who have

Head-and-Neck cancer in order to construct an immobilisation mask for them. The

second observation on the readings is that all the employed segmentation techniques,

except the EM technique, achieved satisfactory similarity ratio and close to each other

results which indicates that the selection of a specific segmentation technique will not
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Technique Slice#1 Slice#9 Slice#18 Slice#36 Slice#63

Otsu

K-means

EM

DRLSE

HMRF-EM

Ground-truth

Figure 5.7: Random segmented CT slices generated by applying Otsu, K-means, EM,
DRLSE, and HMRF-EM techniques to segment the CT slices of the Perspex mask.

Figure 5.8: The first three images represent three images generated when slicing the
laser-scan mesh and the last three images represent the same images after applying
automatic filling.

(a) (b) (c) (d) (e)

Figure 5.9: Constructed models generated from CT segmented slices after applying
(a) Otsu (b) K-means (c) EM (d) DRLSE and (e) HRMF-EM.
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Table 5.1: The Average Similarity Ratio (ASR), for each segmentation technique,
between the CT segmented slices and the ground-truth, Standard deviation (STD),
90th percentile, and the time (in sec) required to segment the whole dataset.

Technique ASR Max. val Min. val STD 90th perc. Time(s)
Otsu 0.9601 0.9796 0.9369 0.00968 0.9711 12.63
K-means 0.9564 0.9747 0.9334 0.01253 0.9714 14.58
EM 0.3537 0.9579 0.0249 0.21215 0.3937 103.83
DRLSE 0.9656 0.9777 0.9462 0.00796 0.9729 114.27
HMRF-EM 0.9597 0.9756 0.9417 0.00813 0.9693 822.36

have a big influence on the final outcome of the process.

The third observation is that the value of the standard deviation when a slice

by slice comparison takes place by all the employed segmentation techniques, except

the EM technique, is very low which indicates that the results generated by the

four segmentation techniques (Otsu, K-means, DRLSE, and HMRF-EM) are stable

and similarity ratios between each slice and its corresponding slice are not spread

out over a wider range of values. This fact is also supported when we see in the

table the difference between the maximum and the minimum similarity ratio for the

four techniques. The fourth observation is that the outcomes of the DRLSE are the

most stable and tend to be closest one to the mean with a standard deviation equals

(0.00796) which makes it again the most convenient candidate for head segmentation

in CT slices. Notice that we have presented in this chapter the use of similarity

ratio for evaluation. While this similarity ratio enables the techniques to be ranked

it doesn’t give any insight into absolute errors. These absolute errors and other

evaluation for the whole process are presented in Chapter 9.

Figure 5.10 displays histograms representing the similarity ratio slice by slice for

each one of the five segmentation techniques. The similarity ratio is measured here by

calculating the Dice similarity coefficient (DSC) between each corresponding slices.

DSC produces a value between 0 and 1 which indicates to which degree the similarity
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Table 5.2: The similarity ratio for the slices 20 to 25 (around patient’s nose).

Otsu K-means EM DRLSE HRMF-EM
0.9531 0.9479 0.3850 0.9570 0.9515

is between the two corresponding slices. The results shown in the histograms support

the observations that we got from Table 5.1 in which we noticed that results generated

by (Otsu, K-means, DRLSE, and HMRF-EM) are close to each other and there are

no high variance over the whole set of slices. It is worth noting, in Figure 5.10, that

there is a small decrease in the similarity ratio, for the four segmentation techniques

mentioned before, around the region of patient’s nose (slices 20 - 25) but this small

decrease is very low and has no real effect on the accuracy of the derived model. The

reasons for that decrease is explained in the discussion part of Chapter 9. Table 5.2

displays the average similarity ratio over the slices (20-25) in which we can observe

that the DRLSE produced the higher similarity ratio when compared to the other four

techniques. Anyway, as manufacturing the immobilisation mask includes defining a

hole on the nose region for breathing purposes then the accuracy around that area is

not a priority in our case.

5.5 Summary

This chapter evaluated five different segmentation techniques. A brief technical back-

ground on these segmentation techniques is presented in the beginning of this chapter.

We also developed a post processing algorithm to handle the case when the DRLSE

produces more than one contour in the final output. This algorithm in addition to our

work to set the initial level set binary function for head segmentation in CT images

is explained in a separate section. The experiments, results, and outcomes of this

chapter encourage us to apply the DRLSE technique for segmentation of the skin/air

interface of the head as this technique leads to relatively better results than the other
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(a) Otsu (b) K-means

(c) EM (d) DRLSE

(e) HRMF-EM

Figure 5.10: Similarity ratio slice by slice for different segmentation techniques. The
process that we follow to find these similarity ratio is presented in Chapter 7.
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four techniques.

As the experiments in this chapter produced CT-derived model from the seg-

mented CT slices, we are now in a place which qualifies us to move on and perform

a 3D automatic alignment between the CT-derived model and the laser-scan model.

The following chapter presents the details of the process that we developed in order

to perform an alignment (i.e. registration) between the two models.



Chapter 6

Automatic 3D Alignment

It was presented in Chapter 3 Section 3.1 that the laser-scan digital models will be

used as a ground-truth for evaluating the accuracy of the CT-derived models. This

evaluation requires an accurate alignment between the ground-truth (i.e. laser-scan

model) and the input model (i.e. CT-derived model). Consequently an automatic

approach should be developed to align (register) the laser-scan model and the CT-

derived model. This chapter presents the details of the approach that we follow

to align the two models automatically. Section 6.1 presents an overview on one

of the most well-known techniques used for geometric alignment of 3D data-models

named the Iterative Closest Point (ICP) algorithm. Section 6.2 describes a customised

version of ICP that we developed in order to speed up the alignment process and

increase the accuracy of it. Experimental work and results are displayed in Section

6.3. Finally, in Section 6.4, we present a summary describing the main parts of this

chapter.

6.1 Iterative Closest Point (ICP)

The ICP algorithm is a frequently and widely used method for 3D alignment [176,

177]. It is an optimization algorithm that performs a number of iterations in order

to minimize root mean square distances (RMSDs) of corresponding points between

78
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two data sets and consequently to align them. The two datasets, the input and the

target, are normally given to ICP as a set of sparse representation of points. As

the relative positions of these points is not known and as noisy data are a problem

with all kinds of 3D acquisition methods [178], performing an accurate registration

between them represents a challenging task and needs a robust algorithm. The ICP

algorithm is one of the popular algorithms in this field which focuses on two issues:

(1) discovering the best correspondence between points in each dataset and (2) deter-

mining the most accurate transformation from input dataset to target dataset. The

ideal transformation is identified to be the one that let the least squares reaches the

minimum [179].

ICP was introduced mainly to find the transformation that aligns between two

data sets by minimizing the root mean square errors between the corresponding points

in each dataset. After that, ICP was employed in different applications and research

areas. For example, in [180] ICP was used to register two sequences of eight surfaces

of the left ventricle of the heart, obtained from two different medical imaging modal-

ities. In [181], ICP was used for camera pose refinement. In [182], a high-standard

vehicle control system was proposed in which ICP was used to evaluate and obtain

state quantities of vehicles with roadside sensors. [183] used ICP in scanned model

reconstruction. [184] and [185] employed ICP in 3D face pose estimation.

The followings represent the main steps of the ICP algorithm:

Step1: Input for two data sets. (We will call the first one a target mesh and the

second one an input mesh).

Step2: Observing corresponding points in both meshes. Finding the corresponding

points can be done through different approaches. The common approach is to find,

for each point in the input mesh, the closest point in the target mesh. The other

approaches used to find the corresponding points are presented in Section 6.1.1 which
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discusses the different variants of the ICP algorithm.

Step3: Computing transformation matrices (rotation and translation) in order to

minimize the total distance between the two meshes.

Step4: Moving the input mesh to match the reference target mesh according to the

transformation matrices resulted from step3.

Step5: Loop (from step2 to step4) until the total distance between the two meshes

becomes less than a threshold value or until a specific number of iterations is per-

formed.

6.1.1 Variants of ICP

The basic concept of ICP was presented in the early 1990s nearly at the same time

by Besl and McKay [186] and Chen and Medioni [187]. The form which introduced in

[186] is the most frequently cited one. ICP takes two 3D models, as an input, and an

initial transform estimation that can find the correct alignment between the two mod-

els. It then improves the transform by repetitively producing sets of corresponding

points from the two models and reducing the measured value of error.

Many variations of the ICP algorithm have been presented in literature. Good

reviews about these variations were presented by [176] and [188]. If we look at ICP

as an algorithm consisting of six phases, then we can classify the variations of ICP

according to their effects on each one of these phases. We prepare a schema to rep-

resent these variations in Figure 6.1. The phases of the ICP algorithm are:

Phase1: Selection

In this phase, selection of all or some of points are carried out. More than one method

have been proposed to perform the selection. The common approaches which have

been proposed for the selection process include:

A. Selecting all points as in the basic ICP proposed by [186].
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Figure 6.1: ICP phases and common approaches.

B. Uniform subsampling [189].

C. Random subsampling [190].

D. Normal space sampling [176].

E. Gradient-based or colour-based selection [191].

Phase2: Initial transform estimation

Creating the initial transform can be performed in different ways.

A. Exhaustive search for corresponding points [192, 193].

B. ‘Spin-image’ surface signatures [194].

C. Computing principal axes of scans [195].

D. Identification and indexing of surface features [196, 197].

Phase3: Matching

In this phase, each selected point from the input dataset should be paired with a

correspondent point from the target dataset. The following are some of the common

methods used in literature to match the points:
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A. Finding the closest point in the target dataset as proposed in the basic ICP [186].

B. Normal shooting [187].

C. Reverse calibration [198, 199].

D. Using the invariant features [200, 201], colour or surface normals [202] in the dis-

tance metric.

E. Using fuzzy correspondences [203].

F. M-estimation-based method for correspondences [204].

G. Point-to-ray [205] or point-to-plane [206] metrics.

H. Mahalanobis distance for correspondence.

Phase4: Weighting

In this phase, different weights are assigned to the corresponding points. The clas-

sification of algorithms which are grouped under this field depends on the approach

that each algorithm use to assign weights. The following are some of the common

approaches used to assign weights:

A. Constant weight

B. Providing higher weights to pairs with smaller distance.

C. Compatibility of normal based weighting in which Equation 6.1.1 will be used to

find the compatibility of normals between the two paired points given that the plane

which contains the first point has a normal named n1 and the plane which contains

the second point has a normal named n2.

Weight = n1.n2 (6.1.1)

Phase5: Rejecting Some Pairs of Points

The main target of this phase is to remove outliers which have a big influence on

the registration outcomes when working on least-squares minimization. The common

proposed approaches in this field are:
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A. Removing the worst n% of points [207, 202].

B. Removing points which are located on mesh boundaries [189].

C. Removing points which are not consistent with neighbouring points [205].

D. Removing points with a distance greater than a threshold value [176]. This thresh-

old value could be defined as in [190] in which the authors rejected the corresponding

points with distances greater than 2.5 times the standard deviation of distances.

Phase6: Setting an error metric and minimizing it

In this phase, an error metric should be used and iteratively minimized in order to

reach to a better registration results. The common error metric used in the literature

are:

A. Sum of squared distances between paired points. This metric was used by most

algorithms in this field [188].

B. Point-to-point with colour metric [208].

C. Point-to-plane metric [187].

D. Using fractional root mean squared distance (FRMSD) which includes the fraction

of inliers when finding the distance [209].

In the next section we present a customised version of the ICP algorithm that we

applied to align between the laser-scan model and the CT-derived model.

6.2 Customised version of ICP

Since using the basic form of the ICP algorithm to match the corresponding points

between two datasets may lead the process of ICP to converge but to a local mini-

mum [209], and since many variations of the ICP algorithm have been presented in

the literature, we implemented numerous forms of ICP in order to find the best form

which presents the optimal alignment and registration between the two models in the

shortest amount of time. The settings that we chose in order to achieve the best
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performance in terms of time and accuracy of registration are:

- In terms of selection, we allow the ICP to include all the points in the registration

process. This will help the ICP algorithm to align the two models better and will

not divert the algorithm to incorrect matching. We have not used subsampling in the

selection process although random subsampling [190], uniform subsampling [189] and

normal space sampling [210] have been used in some cases in some studies because

the sampling process is a critical issue and can lead to misalignment between the two

models. The experiments that we implemented indicate that there is no considerable

time saving when we used subsampling.

- In terms of matching, we pair each point from the laser-scanned model with a cor-

responding point from the CT-derived model according to the closest point rule as

proposed in [186].

- In terms of setting an error metric to be minimized, we use the ‘sum of squared

distances’ between paired points since this metric is used by most studies in this field

[188].

Since 3D meshes normally have a large number of points, the registration/alignment

process could be time consuming. We applied some additional steps in order to

shorten the required time for the alignment process:

- A KD tree data structure is used to specify how point matching should be done

quickly. The aim of using KD trees to search for closest points is that it transforms

the process of searching the closest point to searching inside a binary tree. In this

process, the set of points is divided according to the value of the median of first

coordinates of all points. The point that corresponds to the median is set to be the

root of the binary tree. Then, the two consequential subsets are divided according

to the value of the median of their second coordinates. This process can be extended

to higher dimensional spaces as it is the case in our alignment problem since we have
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three coordinates for each point. The concept and details of the KD tree is presented

in [211].

- Point to point minimisation is employed when surface normals for the points are

not available and point to plane minimisation is employed when surface normals are

available. Point to point minimisation is based on the Singular Value Decomposi-

tion (SVD) and is usually the fastest method. Point normals will be found through

Principal Component Analysis (PCA) procedure of the 4-nearest neighbours. This

implies that the error metric, which defines the objective function, sums the squared

distances of input-model points to target-model points. Equation 6.2.1 represents

the objective function where R and T represent the final rotation and translation

matrices respectively, d and g represent the ith point in an input and target mod-

els respectively, and n represents the total number of corresponding points. Point

to plane minimisation will often yield higher accuracy. It uses linearized angles and

requires surface normals for all points.

TotalDist =
n∑
i=0

(Rdi + T − gi)2 (6.2.1)

- Extrapolation is used so the iteration direction will be evaluated and extrapolated

if possible using the approach outlined by Besl and McKay [186].

- Detecting convergence is activated thus allowing a good short-term performance.

We will refer to the ICP algorithm that uses the above mentioned settings as ‘cus-

tomised ICP’ or adjusted throughout this chapter. ICP will return the final trans-

lation T and rotation R matrices which are required to transform the vertices of

the laser-scanned model from its initial position and orientation to a new position

and orientation as presented in (6.2.2) where P and Q represent the vertices of the

laser-scanned model before and after the alignment respectively.



CHAPTER 6. AUTOMATIC 3D ALIGNMENT 86

Q = R ∗ P + T (6.2.2)

The customised version of ICP that we applied achieved great results in terms of

speed and accuracy of alignment as it will be presented in Section 6.3 , but we tried

to search for another 3D alignment approach to explore if we can get more accurate

results. We applied the basic form of a technique named Procrustes Superimposition

(PS) [212] which is performed by optimally translating, rotating and uniformly scal-

ing the objects. PS method did not achieve competitive results in some cases and

completely failed to align the two models in other cases.

6.3 Experimental Work & Results

The three objects that were used in these experiments are shown in Figure 6.2. We

chose these objects at this stage because it is easy to acquire CT data for these

objects (i.e. no ethical approval needed) and at this stage in the project we didn’t

have ethical approval. The first object is a 3D-printed scaled head of a Cantonese

chess piece, the second dataset is a plastic object in a shape of nested cubes and

the third dataset represents a plastic hemisphere. The details of these data sets

are presented in Chapter 3. The head was scanned using a hand-held laser scanner

(REVscanTM laser scanner from Handyscan 3D Creaform, Canada) where the other

two objects were scanned using (Artec Space SpiderTM laser scanner from Artec 3D,

Luxembourg) in order to use the resultant 3D meshes as a ground-truth. The two

hand-held laser scanners which were used to scan the objects are displayed in Figure

6.3.

A comparison between the results that we got from the customised ICP against the

basic form of the ICP is presented in this section. Figure 6.4 (top) shows the two mod-

els (i.e. the CT-derived model and laser-scan model) before performing an alignment
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Figure 6.2: Three objects (left): head (middle): cubes (right): dome.

Figure 6.3: (left): The REVscanTM laser scanner from Handyscan 3D (right): Artec
space spiderTM laser scanner from Artec 3D.

and Figure 6.4 (bottom) shows the two models after applying the customised ICP.

The two models, as shown in Figure 6.4 (top), were completely misaligned, having

different coordinate systems, different image resolution and different point-set densi-

ties. Applying the customised ICP algorithm leads to a high level of superimposing

and registration between the two models.

Enhancements produced by the customised ICP algorithm

Table 6.1 presents a comparison between the basic form of the ICP algorithm and

the customised one in terms of execution time and average distance between the two

models. It is obvious from the table that the customised ICP requires much less time

to converge than the basic form of ICP. This is due to the use of the KD tree, point

to point minimisation and the ability to detect convergence. It is worthy to be noted

that the average distances that we got for the three objects were smaller than the CT

pixel-spacing value.

Figure 6.5 displays the two models after performing the alignment using the basic
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Figure 6.4: The two models (top): before alignment (bottom): after alignment

Table 6.1: Comparing the basic ICP algorithm with the customised ICP in terms of
execution time and average distance

Average distance(mm) Execution time(sec)
Method head cubes dome head cubes dome
Basic ICP 2.8651 3.5256 0.7346 61.80 263.26 423.45
customised ICP 0.60392 0.6192 0.47472 3.28 26.96 9.10

form of the ICP and the two models after performing the alignment using the cus-

tomised ICP. It is obvious that the two models were superimposed very well when the

customised ICP was used whereas the models were not well aligned when the basic

form of the ICP was used. There is a high possibility for the basic form of the ICP

algorithm to be trapped in local minima. This is very clear in the case of the cubes

as column 2 displays in Figure 6.5.

Figure 6.6 displays the convergence plots when we applied the basic form of the

ICP algorithm over the three objects (left column) and the convergence plots for

the same objects when we applied the customised form of the ICP algorithm (right
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column). The plots show that both of the forms are able to converge but to a local

minima in the case of the basic form of the ICP algorithm.

Head Cubes Dome

Figure 6.5: The outcomes after performing the alignment when using (top): the basic
form of ICP, (bottom): customised (adjusted) ICP.

6.4 Summary

This chapter presented a detailed description of the ICP algorithm; one of the well-

known algorithms used for 3D alignment. It then presented an overview on many

variations of the ICP algorithm. We developed a customised version of the ICP

algorithm in order to achieve the best performance in terms of time and accuracy of

alignment. The outcomes of the experiments show that the average distances between

the aligned models were smaller than the CT pixel-spacing value which ensures the

accuracy of the employed approach. The outcomes, in this chapter, are presented

visually and in tabular format to get a clear evidence on the accuracy and correctness

of the output. The next chapter will present the details of a proposed 3D overlap
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measurement approach that we developed to be used as measurement to find the

degree of alignment between 3D models.
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The basic ICP The customised ICP

Figure 6.6: Convergence plots when applying the basic ICP and the customised (ad-
justed) ICP over (top): the Cantonese head , (middle): cubes and (bottom): dome.



Chapter 7

Overlap Measurement

The evaluation of the accuracy of 3D medical image segmentation and registration

is normally performed by measuring the overlap ratio between the examined model

and the ground-truth. Consequently the reliability and accuracy of the applied over-

lap measurement play a key role in the evaluation process. This chapter presents a

3D-overlap measurement for medical volume images. For convenience we will refer

to the proposed overlap measurement as “Dice 3S” similarity measurement through-

out this chapter. While the current overlap measurements employed in biomedical

fields were initially designed for computer graphics applications, the Dice 3S simi-

larity measurement extends 2D overlap measures that are popular for evaluating 2D

medical image segmentation to 3D medical volumes. Dice 3S does not just produce a

figure-of-merit of the proportion of the region match but it also gives complementary

statistical information that enables the observer to assess the scale and positions of

regions/volumes of match and mismatch. The information is organised for each one

of the axial, sagittal and coronal planes which makes this measurement convenient

for medical images. Six different datasets are used in this chapter to test and validate

the results. We use two strategies in order to evaluate the proposed model (Dice 3S).

The first is examining the correlation between Dice 3S and other overlap measure-

ments which are widely used and accepted. The second is analyzing our model’s

92
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outcomes for particular test cases in which we know in advance how the trend of the

correct outputs should be. The results support the importance of employing the pre-

sented overlap measurement, Dice 3S, to evaluate the outcomes of the segmentation

and registration of medical images.

We have also employed Dice 3S in two different applications which are related to

the quality of surface simplification of volume images. For convenience, we present

the experimental work and results that are related to the surface simplification in

Appendix A.

7.1 Introduction

A typical medical volume image is a stack of 2D slice images acquired by an X-ray CT,

Magnetic Resonance Imaging (MRI), or Positron Emission Tomography (PET). The

3D overlap measurement is a measure that finds the proportion of overlap between

two 3D models (i.e. between two medical volumes in our context).

The accuracy of a segmentation and registration algorithm can be defined as the

level to which the outcomes agree with the ground truth, a so called “gold standard”

[174]. In this study, we employ the mesh which is generated from the laser scan as a

ground truth. The need for a robust and accurate overlap measurement to be used as

a measure in biomedical engineering is of great significance. This measurement should

quantify the region agreement between two volumes and consequently will reflect the

quality of the registration and segmentation processes.

A good example motivating the need for 3D overlap measurement is cone-beam

CT. Radiotherapy treatment is increasingly using cone-beam CT for monitoring pre-

treatment patient set-up. Hence it needs registration of CT volumes (rather than

images). The accuracy of the registration and segmentation processes plays a key

role in medical applications. In registration, a group of methods are employed to
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establish anatomical or functional correspondence between images/volumes obtained

at different times, with different modalities, or of different subjects [213, 214]. Reg-

istration is of vital importance for image-guided radiosurgery [215], image-guided

radiation therapy [216], interventional radiology [217], and image-guided minimally

invasive surgery [218]. For example, in image-guided minimally invasive surgery, the

registration of pre- and intra-interventional data supply a surgeon with notifications

about the current position of the used instruments relative to the planned trajectory

and the definitive target [219]. In external beam radiotherapy, registration of plan-

ning CT images and daily pre-treatment images lead to more accurate positioning for

a patient, which is important for accurate targeting of cancerous tissue while min-

imising the dose to surrounding healthy organs [11]. Moreover, 3D image registration

is of vital importance in dental surgery [220] and has numerous applications in that

field [221, 222].

The segmentation is also one of the primary procedures that are required in medi-

cal applications. The importance of segmentation comes from its ability to delineate,

characterise, and visualise regions of interest in medical volumes [223]. Segmentation

of medical volumes can be performed manually, automatically (computerized) or using

a combination of methods. However, manual segmentation is time-consuming com-

pared to automatic segmentation and the results may be prone to observer variability

whereas using computer-aided segmentation techniques have significantly improved

the accuracy of the segmentation outcomes [175] [62]. Both of the segmentation

methods (i.e. manual and automatic) need a reliable overlap measurement to quan-

tify the quality of the segmentation process and can be evaluated numerically using

appropriate measurements [224].

There are three measurements that are widely used by researchers to measure

the overlap between medical volumes. These measurements are: Hausdorff Distance
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(HD), Mean Surface Distance Error (MSDE), and Signed Distances with a Colour-

Coded Visualization (SDCCV). The distances in MSDE and SDCCV are calculated

for each point of the first surface by computing its Euclidean distance to the cor-

responding point of the second surface. The average value of absolute distances

is calculated in MSDE whereas signed distances are calculated for each point in SD-

CCV. Examples of studies that applied the MSDE and SDCCV for evaluation include

[225, 83, 88, 80, 226, 227, 228, 229]. It is worth noting that there is no definite line

between MSDE and SDCCV and numerous studies applied the two concepts inter-

changeably as both of them use the Euclidean distance (i.e. Root Mean Square Error

(RMSE)) as a base for the comparison.

Hausdorff Distance (HD) is used to measure how far two subsets of a metric space

are from each other. It can be applied to determine the degree of similarity between

two models that are superimposed on one another [230]. Examples of studies used

HD for evaluation include [231, 232, 233, 234, 235]. HD represents the greatest of

all the distances from a point in one set to the closest point in the other set. Given

Equation (7.1.1) where ‖.‖ represents the Euclidean norm

h(A,B) = maxa∈Aminb∈B‖a− b‖ (7.1.1)

then Hausdorff distance is computed as shown in Equation (7.1.2).

H(A,B) = max(h(A,B), h(B,A)) (7.1.2)

A review of current overlap measurements leads to some observations:

• Signed distances with colour-coded visualisation does not quantify the outcome

as a single number (i.e. figure of merit).

• Most of overlap measurements including the HD, MSDE and SDCCV measure

the degree of agreement with regard to the surface points but not for each voxel

inside the object.



CHAPTER 7. OVERLAP MEASUREMENT 96

• Those overlap measurements are initially designed for general purposes and

specially for computer graphics applications but not particularly for medical

application. This means that those measurements are more appropriate to 3D

surface models than 3D solid models.

• HD is sensitive to outliers in the input data [236] which is a common case in

medical images.

• MSDE and SDCCV are sensitive to point positions and they are classified as

distance-based measurements more than overlap-based measurements [237].

• HD can sometimes produce misleading results since it finds the greatest of all

the distances from a point in one set to the closest point in the other set (i.e.

the maximum of minimums).

• It is not an easy for distance-based error measurements including the HD, MSDE

and SDCCV to measure a precise geometric error on a highly curved surfaces

since the error calculated by these measurements on such a region is usually

small [238].

• None of those overlap measurements present an analysis with regard to the

axial, sagittal and coronal planes whereas this analysis is convenient in different

clinical cases.

Dice 3S similarity measurement produces a proportion (a number between 0 and

1) to reflect the ratio of overlap between two 3D models where 1 indicates a complete

match and 0 a complete mismatch. This overlap measurement forms a framework to

quantify the degree of agreement between two volume images. In this framework, the

overlap proportion can be measured between one surface and another surface, one

surface and one volume (i.e 3D grid), and one volume and another volume. These
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three cases are common and required in numerous medical applications. Dice 3S

does not just produce, as a final output, a figure of merit of the proportion of the

region match but it gives complementary figures that allow the scale and location of

regions/volumes of match and mismatch to be visualised and subjected to statistical

analysis. These complementary figures make Dice 3S a specialised and comprehen-

sive tool to measure the overlap between medical images in particular.

Dice 3S examines the overlap ratio taking the axial, sagittal and coronal planes

into consideration. This makes it the appropriate choice for medical volume images.

It is very important to not only derive global measures but to analyse the local dis-

tribution of these errors since local distributions may immediately show where/which

kinds of anatomical shapes are not correctly matched [232]. The complementary

figures, which are offered by the overlap measurement, give the facility to help in

identifying where/which regions are not correctly matched or mismatched.

The Dice similarity coefficient (DSC) is one the most popular and used 2D overlap

measure to evaluate the outcome of the image segmentation. Dice 3S applies DSC,

which was presented earlier in this thesis in Section 2.6, in three dimensions (axial,

sagittal, and coronal). Dice 3S slices the examined objects in three dimensions and

applies DSC over the collection of all slices in each direction. This explains the

reason for naming the proposed model as Dice 3S. Since Dice 3S applies DSC, it is

insensitive to outliers. Dice 3S is designed to be overlap-based oriented measurement

and it is able to locate geometric errors on highly curved surfaces when the image fill

property is deactivated as it will be discussed in Section 7.2.

The remainder of this chapter is organised as follows: Section 7.2 presents the data

sets used in this study and describes the Dice 3S model. Section 7.3 presents three

algorithms that we follow to slice surfaces (i.e. divide them into layers). Section

7.4 presents the experimental work that is performed to evaluate the reliability of
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Dice 3S. The results are presented in Section 7.5 and discussions of these results are

presented in Section 7.6. Section 7.7 draws the conclusions for this chapter.

7.2 Materials and Methods

7.2.1 Data Sets

There are six different data sets used in this chapter (see Table 7.1). The description,

properties and sources of these data sets are presented in Chapter 3. The ‘Pelvis’ and

the ‘Knee’ data sets are used to evaluate the performance of the overlap measurement

when it is applied to measure the overlap between two surfaces. The ‘Cubes’ and the

‘Dome’ data sets are used to measure the overlap between one surface and one volume

(3D-grid) since we have acquired a laser scan (surface) and a CT scan (volume) for

those two objects. The ‘Head1’ and the ‘Head2’ data sets are used to evaluate the

overlap measurement when it is applied to measure the overlap between two volumes.

Table 7.1: Description of data sets used in this study.

Dataset Format
Pelvis STL file
Knee STL file
Cubes, Dome STL file + CT DICOM images
Head1, Head2 CT DICOM images

7.2.2 Methods

The proposed similarity measurement (Dice 3S), shown as a model in Figure 7.1,

evaluates numerically the degree of overlap between two 3D models. It accepts two 3D

models as inputs and classifies each input as a surface or a volume. According to that,

the approach selects one of three paths to measure the proportion of overlap. The first

one represents the case in which the two inputs are surfaces. This case is common in

medical applications. An example of this case is performing registration between two
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surfaces acquired for the same object by two acquisition devices. Another example

of that case is evaluating the quality of segmentation of the 3D model by comparing

it to a ground-truth surface [84, 89, 239, 90]. The second path represents the case in

which one of the inputs is a surface and the other is a volume (i.e. 3D grid of volume

data). An example of this case is when an evaluation is needed for a CT-derived

model by comparing it with a surface mesh as a ground truth [11, 5, 106, 240, 82].

The third path represents the case when both the inputs are a 3D grid of voxels. An

example of this case is when an object is CT-scanned by different CT scanners to

evaluate the accuracy of each scanner [241, 242, 243, 244, 245].

In the case of surface ∼ volume matching, the first step that Dice 3S will perform

is extracting the isosurface from the volume to form a surface. This extraction is done

by a common algorithm called the Marching Cubes algorithm [19]. After that, the

slicing process takes place by performing plane/triangle intersections for each surface

in the three different planes (i.e. axial, sagittal and coronal). The slicing process

consists mainly of :

• Simplifying the mesh

• Plane/triangle intersection

• Projection of intersection points into 2D-image pixels

The following section presents three algorithms that we follow to slice surfaces.

7.3 The Slicing Process

7.3.1 Simplifying the Mesh

The aim of this step is to extract the vertices from the mesh and then to remove

the duplicated vertices, a process named simplifying the mesh. Removing duplicated
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Figure 7.1: The proposed model of measuring the degree of overlap between two
medical volumes.
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vertices will reduce the computational cost and will not affect the quality of the

outcomes.

Suppose that a mesh has Nf facets and Nv vertices, then the relation between

the two values can be described as in Equation (7.3.1). Observing that the number

of vertices is 3 x Nf and noting that many of the triangle facets share vertices, then

there will be redundant vertices. Removing these duplicated vertices will make a

significant difference in terms of the required memory and time.

Nf ≤ Nv ∗ 3 (7.3.1)

The steps that trace the process that we follow to simplify the mesh is displayed in

Algorithm 3. In the algorithm, Vnew will store the coordinates of triangles’ vertices

without repetition, and Fnew will keep a record of which vertices to connect according

to the new ordered non-duplicated values stored inside Vnew. Both of the two struc-

tures Vnew and Fnew will be used later instead of V and F respectively as inputs to

the next step when performing the plane/triangle intersection.

Algorithm 3 Simplifying the mesh

Declarations
1: V : a structure of vertices before simplifying.
2: Vnew: a structure of vertices after simplifying.
3: F : a structure of facets’ labels before simplifying.
4: Fnew: a structure of facets’ labels after simplifying.

Procedure
5: Vnew ← unique rows of (V )
6: Sort Vnew
7: Create indexN such that V (:)← Vnew(indexN)
8: Fnew ← indexN(F )

7.3.2 Plane/Triangle Intersection

The aim of this step is to perform an intersection between the triangles of the mesh

and the group of planes located at equal distance from each other. There are a group
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Algorithm 4 Getting intersection segments

1: current perspective = {Axial, Sagittal, coronal}.
2: intersection points: intersection points between each facet and planes.
3: for i← 1, 3 do
4: for all plane(p) ∈ current perspective(i) do
5: Get a point Q lies on that plane.
6: Find the normal N of that plane.
7: for row ← 1, num of rows in Fnew do
8: Construct a triangle (t) of 3 vertices such that:
9: P1← Vnew(Fnew(row, 1), :)
10: P2← Vnew(Fnew(row, 2), :)
11: P3← Vnew(Fnew(row, 3), :)
12: Intersect p with t
13: if intersection exist then
14: intersection points← coordinates
15: end if
16: end for
17: end for
18: end for

of planes located in axial direction, a group of planes in sagittal direction, and a group

of planes in coronal direction. Notice that each plane is defined by a point that lies

on it Q and a normal vector N , and each triangle is defined by three vertices (P1,

P2 and P3).

Algorithm 4 presents the procedure that we follow to get the intersection line

segments between triangles and planes. In this algorithm we calculate the intersection

points between each facet of the surface and planes to store those points in a structure

named intersection points. It is worth noting that the process of getting the corners

of each triangle (i.e. P1, P2 and P3) is not performed directly in Algorithm 4 since

we reorganised the order of storing the points when we simplified the mesh in the

previous step. Instead of that, we use the stored labels inside Fnew as an index to

pick the vertex from Vnew at that specific index. The loop which starts at line 7 will

iterate through each facet in the mesh in order to find the intersection segments.
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7.3.3 Projection of Intersection Points into Image Pixels

Since surface meshes have coordinates in a “space-domain” which represent a contin-

uous range of values (float numbers), we follow a method to map these continuous

values to discrete values and then project them into 2D images. Algorithm 5 rep-

resents the procedure that we follow to generate a stack of 2D binary images from

the surface model. As Algorithm 5 displays, there are some declarations and initial

calculations at the beginning of the algorithm followed by the procedure. The aim of

that procedure is to translate the continuous range of values in 3D space to values

located on the slice planes. These slice planes will produce a stack of binary images

for each surface model. The two stacks of 2D images will be later compared via DSC

[74].

The procedure starts by creating a black slice with a number of rows equal to

height and a number of columns equal to width. These values of height and width are

unified for each slice in the same perspective. So the algorithm will generate a stack

of 2D slices of the same height and width for the axial perspective, another stack of

2D slices with different height and width for the sagittal perspective, and another one

for the coronal perspective. After that, two main iterations take place. The first one

(line 14-35) is responsible for quantisation by taking the intersection points generated

from the previous step (i.e. plane/triangle intersection) and projecting each point to

the nearest pixel location in the output slice. The second main iteration (line 36-42)

employs the Bresenham’s line algorithm [246] to connect between the end points of

each intersection segment and setting the corresponding pixels at those locations.

The final output of Algorithm 5 will be a stack of binary images to represent the

outer surface of the object.
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Algorithm 5 Generating 2D slices from the mesh

Initializations
1: minX: min value stored in (x) triangle’s coordinates.
2: maxX: max value stored in (x) triangle’s coordinates.
3: minY : min value stored in (y) triangle’s coordinates.
4: maxY : max value stored in (y) triangle’s coordinates.
5: width: the width of each slice.
6: height: the height of each slice.
7: r data: a row vector of length = height.
8: c data: a row vector of length = width.

Initial Calculations
9: Fill r data with evenly spaced points in [minX,maxX].
10: space rows← (maxX −minX)/(height− 1).
11: Fill c data with evenly spaced points in [minY ,maxY ].
12: space cols← (maxY −minY )/(width− 1).

Procedure
13: Create a black slice of size (width x height)
14: for all rowi ∈ intersection points do
15: x← the first element in rowi
16: for j ← 1, height do
17: cond1 = x ≥ r data(j)
18: cond2 = x < (r data(j) + space rows/2)
19: if cond1&cond2 then
20: x index← j
21: else
22: x index← j + 1
23: end if
24: end for
25: y ← the second element in rowi
26: for j ← 1, width do
27: cond1 = y ≥ c data(j)
28: cond2 = y < (c data(j) + space cols/2)
29: if cond1&cond2 then
30: y index← j
31: else
32: y index← j + 1
33: end if
34: end for
35: end for
36: for all end points ∈ intersection segments do
37: Apply Bresenham algorithm to connect end points.
38: Update x index and y index
39: for k ← 1, length of x index do
40: Slice(x index(k), y index(k))← 1
41: end for
42: end for
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(a) (b)

Figure 7.2: 2D binary image generated after applying Algorithm 5 over the Pelvis
dataset (a): Without activating the automatic fill (b): activating the automatic fill.

7.3.4 Filling the Slices

The presented approach offers the option to fill or not to fill the slices which represent

the outer surface of the object (see Figure 7.2). The algorithm that is described in

[127] is used for filling the slices automatically. This algorithm performs a flood-fill

operation on background pixels based on morphological reconstruction. We recom-

mend deactivating the automatic-filling option when the contour is of interest (e.g

when the focus of research is to find an exact boundary delimitation). We recommend

activating the automatic-filling when the general alignment and overlap is of interest.

Equation 7.3.2 displays how DSC is calculated

DSC =
2N(A ∩B)

N(A) +N(B)
(7.3.2)

Where A and B represent the first and second sets respectively and N() refers to the

number of pixels in the enclosed set. Dice 3S finds three separated values of DSC

one for each plane (axial, sagittal, and coronal). These three values can be averaged

to produce the mean or displayed individually according to the requirement of the

examined case.

Since DSC measures the ratio between the number of white pixels common in the

two images to a total number of white pixels in the two image, its value can change
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dramatically when no-filling option is activated if the total number of white pixels

common in the two images changes slightly.

7.4 Experimental Work

The experimental work in this chapter aims to evaluate the reasonability of the out-

come generated by Dice 3S. We use two strategies in order to analyze Dice 3S. The

first is examining the correlation between Dice 3S and the outcome of the Root Mean

Square Error measurement (RMSE) and Hausdorff distance (HD) as these two mea-

surements are widely used and accepted by researchers. The second is analyzing our

Dice 3S outcomes for particular test cases (shown in Table 7.2) in which we know in

advance how the trend of the outputs should be.

The experiments are designed to evaluate the reliability of the outcomes produced

by 3D overlap measurements when a surface is compared with a surface, surface with

a volume, and volume with a volume. Table 7.2 displays the test cases that have been

performed and the data sets that have been used for each input.

The outcomes that are generated when applying the test cases are investigated

and compared with the outcomes of the Root Mean Square Error (RMSE) and the

Hausdorff Distance (HD) method. Note that RMSE measurement is the measure-

ment that is used by MSDE and SDCCV to find the distances. The results of those

comparisons are presented in Section 7.5.

7.5 Results

As mentioned in Section 7.4 we design the experiments to measure the overlap between

two surfaces, between one surface and one volume, and between two volumes. This

section focuses on presenting the results whereas Section 7.6 discusses these results.
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Table 7.2: Description of the test cases used in the experimental part and their
corresponding data sets.

Inputs Sets Test Cases
Surface ∼ Surface Pelvis The same surface

Knee Rotate the surface 2 degrees in x direction
Rotate the surface 2 degrees in y direction
Rotate the surface 2 degrees in x direction
Rotate the surface 2 degrees in 3 directions
Rotate the surface 5 degrees in x direction
Rotate the surface 5 degrees in y direction
Rotate the surface 5 degrees in z direction
Rotate the surface 5 degrees in 3 directions
Rotate the surface 15 degrees in x direction
Rotate the surface 15 degrees in y direction
Rotate the surface 15 degrees in z direction
Rotate the surface 15 degrees in 3 directions
Translate the surface 2% in y direction
Translate the surface 5% in y direction
Translate the surface 25% in y direction
Completely separate the objects

Surface ∼ Volume Cubes The same as test cases in the above
Dome

Volume∼Volume Head1 The same volume
Head2 Random voxels inverting (percenatge = 5%)

Random voxels inverting (percenatge = 20%)
Random voxels inverting (percenatge = 35%)
Completely inverted voxels
Inverting specific column in each slice

Surface ∼ Surface Overlap

Table 7.3 displays the values that are generated by Dice 3S, RMSE, and HD when

they are applied over the ‘Pelvis’ and ‘Knee’ data sets. These experiments over the

‘Pelvis’ and ‘Knee’ data sets are examples on applying the overlap measurements be-

tween two surfaces.

Figure 7.3 displays six bar charts that Dice 3S generates for axial, sagittal and

coronal perspectives when it is run to find the ratio of overlap between the original

surface of the Pelvis dataset and the same surface after translating it 2% and 5% in

y-direction (Row#14 and Row#15 in Table 7.3). Figure 7.3 (b) and (e), represents

the bar charts of the sagittal plane which show that the number of images that have

a zero similarity ratio (i.e. identified by a red ellipse) when the dataset is translated

5% is greater than the number of images when it is translated by 2%. This outcome

is the expected result for translation in the y-direction only. Note that the bar charts
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Table 7.3: Surface ∼ Surface overlap measurements for different test cases of axial,
sagittal and coronal views.

Row# Case Dice 3S RMSE HD
Axial Sagittal Coronal Average

Pelvis
1 Same 1.00000 1.00000 1.00000 1.0000 0.0000 0.00

2 Rot 2deg xdir 0.91849 0.87023 0.8983 0.8957 0.7981 1811
3 Rot 2deg ydir 0.86423 0.87877 0.8608 0.8679 0.9859 2531
4 Rot 2deg zdir 0.86566 0.83477 0.88539 0.8619 0.9144 2597
5 Rot 2deg 3dir 0.82493 0.79827 0.82531 0.8162 1.2269 2490

6 Rot 5deg xdir 0.8131 0.77446 0.7899 0.7925 1.4078 1871
7 Rot 5deg ydir 0.71122 0.75858 0.70818 0.7260 1.6659 2549
8 Rot 5deg zdir 0.72988 0.68254 0.76811 0.7268 1.6831 2544
9 Rot 5deg 3dir 0.65774 0.64804 0.64529 0.6504 2.1291 2501

10 Rot 15deg xdir 0.54668 0.50139 0.51741 0.5218 3.0101 1985
11 Rot 15deg ydir 0.43425 0.50979 0.40788 0.4506 4.1092 2635
12 Rot 15deg zdir 0.42622 0.38793 0.46384 0.4260 4.1253 2533
13 Rot 15deg 3dir 0.34392 0.33966 0.31900 0.3342 5.3131 2564

14 Trans 02perc ydir 0.87093 0.79052 0.87813 0.8465 0.9858 99
15 Trans 05perc ydir 0.77063 0.6625 0.78236 0.7385 1.7848 248
16 Trans 25perc ydir 0.11866 0.087385 0.13057 0.1122 7.6134 1240

17 Non overlap 0.0000 0.0000 0.0000 0.0000 64.3856 8846

Knee
18 Same 1.00000 1.00000 1.00000 1.0000 0.0000 0.00

19 Rot 2deg xdir 0.9196 0.83161 0.8941 0.8818 2.6070 608
20 Rot 2deg ydir 0.82128 0.92154 0.87666 0.8732 2.4930 24312
21 Rot 2deg zdir 0.94411 0.95532 0.98071 0.9600 1.1942 23906
22 Rot 2deg 3dir 0.81134 0.81561 0.91447 0.8471 3.1930 24449

23 Rot 5deg xdir 0.80689 0.68254 0.7503 0.7466 5.7851 1523
24 Rot 5deg ydir 0.6515 0.82636 0.73783 0.7386 5.4974 24796
25 Rot 5deg zdir 0.88337 0.9131 0.95502 0.9172 2.0253 24018
26 Rot 5deg 3dir 0.63208 0.66772 0.81023 0.7033 7.0673 25031

27 Rot 15deg xdir 0.53832 0.3862 0.42773 0.4507 15.5593 4578
28 Rot 15deg ydir 0.37252 0.60694 0.45142 0.4770 14.7794 24199
29 Rot 15deg zdir 0.72557 0.81077 0.87932 0.8052 4.9550 24218
30 Rot 15deg 3dir 0.32311 0.39495 0.56676 0.4283 18.8890 24072

31 Trans 02perc ydir 0.93367 0.86478 0.94484 0.9144 2.1983 514
32 Trans 05perc ydir 0.83781 0.73161 0.86625 0.8119 4.9985 1286
33 Trans 25perc ydir 0.38327 0.31021 0.46253 0.3853 20.6401 6523

34 Non overlap 0.0000 0.0000 0.0000 0.0000 134.694 22483



CHAPTER 7. OVERLAP MEASUREMENT 109

in Figure 7.3 (a),(c),(d) and (f), which represent the axial and coronal planes, do not

have images of zero similarity ratio since the translation was done in y-direction only.

Surface ∼ Volume Overlap

Table 7.4 displays the values that are generated by Dice 3S, RMSE, and HD when

they are applied over the ‘Cubes’ and ‘Dome’ data sets. These experiments over the

‘Cubes’ and ‘Dome’ data sets are examples on applying the overlap measurements

between one surface and one volume.

Volume ∼ Volume Overlap

Table 7.5 displays the values that are generated by Dice 3S when it is applied over

‘Head1’ and ‘Head2’. The test cases that are performed here are:

- The same volume image

- 5% random changes over the original voxel values

- 20% random changes over the original voxel values

- 35% random changes over the original voxel values

- Completely inverted-voxels of the same volume image

The values in Table 7.5 indicate that the results generated by Dice 3S are rea-

sonable when it is used to find the overlap between two volumes. In the first case

when the volume is compared to itself the overlap measurement gives the degree of

similarity equals one (i.e. total match) which is expected. In the case when we in-

verted the white voxels to black ones the overlap measurement gives the degree of

similarity equals zero (i.e. no overlap) which is expected as well. The values also

show a clear agreement between the degree the similarity of the two inputs and the

value generated by the overlap measurement. As the percentage of random changes

increases in the input model (i.e. less degree of similarity), the value generated by

the overlap measurement decreases. This supports the ability of Dice 3S to reflect
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(a) (b)

(c) (d)

(e) (f)

Figure 7.3: Bar charts that Dice 3S generates for axial (a and d), sagittal (b and e)
and coronal (c and f) perspectives. These charts are produced when it is run to find
the ratio of overlap between the original surface of the Pelvis dataset and the same
surface after translating it 2% in y-direction (a, b and c) and 5% in y-direction (d,
e and f) (Row#14 and Row#15 in Table 7.3). (b) and (e) show that the number
of images that have a zero similarity ratio (i.e. identified by a red ellipse) when the
dataset is translated 5% is greater than that number of images when it is translated
2%.
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Table 7.4: Surface ∼ Volume overlap measurements for different test cases of axial,
sagittal and coronal views.

Row# Case Dice 3S RMSE HD
Axial Sagittal Coronal Average

Cubes
1 Same 1.0000 1.0000 1.0000 1.0000 0.0000 0.00

2 Rot 2deg xdir 0.96143 0.91862 0.94637 0.9421 0.8103 419
3 Rot 2deg ydir 0.89718 0.96854 0.94634 0.9374 0.6429 478
4 Rot 2deg zdir 0.98502 0.99687 0.99834 0.9934 0.8788 473
5 Rot 2deg 3dir 0.88539 0.90944 0.90868 0.9012 1.3440 473

6 Rot 5deg xdir 0.90417 0.83176 0.86346 0.8665 1.8172 419
7 Rot 5deg ydir 0.81104 0.92159 0.86346 0.8654 1.6069 478
8 Rot 5deg zdir 0.96777 0.99388 0.99693 0.9862 2.1954 466
9 Rot 5deg 3dir 0.78912 0.81934 0.8146 0.8077 2.7825 477

10 Rot 15deg xdir 0.76907 0.63786 0.64748 0.6848 3.1058 255
11 Rot 15deg ydir 0.62499 0.78981 0.64749 0.6874 2.5553 476
12 Rot 15deg zdir 0.96585 0.99265 0.99591 0.9848 2.9046 489
13 Rot 15deg 3dir 0.57462 0.63946 0.55562 0.5899 3.9880 483

14 Trans 02perc ydir 0.94798 0.90552 0.94737 0.9336 1.2386 23
15 Trans 05perc ydir 0.88442 0.79355 0.88189 0.8533 3.0033 58
16 Trans 25perc ydir 0.55683 0.41948 0.54984 0.5087 8.0510 294

17 Non overlap 0.0000 0.0000 0.0000 0.0000 44.9030 1013

Dome
18 Same 1.00000 1.00000 1.00000 1.0000 0.0000 0.00

19 Rot 2deg xdir 0.91849 0.87023 0.8983 0.8957 0.5546 65
20 Rot 2deg ydir 0.86423 0.87877 0.8608 0.8679 0.5762 2495
21 Rot 2deg zdir 0.86566 0.83477 0.88539 0.8619 0.1164 2653
22 Rot 2deg 3dir 0.82493 0.79827 0.82531 0.8162 0.7182 2639

23 Rot 5deg xdir 0.81310 0.77446 0.7899 0.7925 1.1001 162
24 Rot 5deg ydir 0.71122 0.75858 0.70818 0.7260 1.1779 2727
25 Rot 5deg zdir 0.72988 0.68254 0.76811 0.7268 0.1960 2654
26 Rot 5deg 3dir 0.65774 0.64804 0.64529 0.6504 1.5778 2617

27 Rot 15deg xdir 0.54668 0.50139 0.51741 0.5218 3.1325 486
28 Rot 15deg ydir 0.43425 0.50979 0.40788 0.4506 3.4278 2663
29 Rot 15deg zdir 0.42622 0.38793 0.46384 0.4260 0.2668 2639
30 Rot 15deg 3dir 0.34392 0.33966 0.3190 0.3342 4.6057 2650

31 Trans 02perc ydir 0.87093 0.79052 0.87813 0.8465 0.7953 168
32 Trans 05perc ydir 0.77063 0.6625 0.78236 0.7385 1.7378 421
33 Trans 25perc ydir 0.11866 0.087385 0.13057 0.1122 8.7223 2103

34 Non overlap 0.0000 0.0000 0.0000 0.0000 74.3029 6441
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Table 7.5: Volume ∼ Volume overlap measurements for different test cases of axial,
sagittal and coronal views.

DataSet Case Axial Sagittal Coronal Average
Head1 same 1.00000 1.00000 1.00000 1.0000

perc=0.05 0.97507 0.97502 0.97522 0.9751
perc=0.20 0.90055 0.90025 0.90045 0.9004
perc=0.35 0.82631 0.82593 0.8265 0.8262
inverted 0.00000 0.00000 0.00000 0.0000

Head2 same 1.00000 1.00000 1.00000 1.0000
perc=0.05 0.97505 0.97519 0.9749 0.9750
perc=0.20 0.90028 0.89805 0.89991 0.8994
perc=0.35 0.82693 0.82684 0.82609 0.8266
inverted 0.00000 0.00000 0.00000 0.0000

Figure 7.4: The values of the same specific column are inverted (from white to black)
in each slice.

to which degree the overlap is between the two input models when both of the inputs

represent volume data.

In order to evaluate the ability of the overlap measurement to produce correct

outcomes for each plane (axial, sagittal or coronal) separately, we inverted the values

of the same specific column in each slice (see Figure 7.4) from white to black and

applied the overlap measurement. The values of these measurements are displayed

in Table 7.6. The values indicate that the minimum value of similarity ratio occurs

in the sagittal plane, which supports the ability of the overlap measurement to sense

the source of any non-overlapped regions.
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Table 7.6: Volume ∼ Volume overlap measurements when the values of the same
specific column in each slice are inverted.

DataSet Plane Avg. Dice Max Dice Min Dice
Head1 Axial 0.99939 1.0000 0.99837

Sagittal 0.99805 1.0000 0.0000
Coronal 0.99931 1.0000 0.99634

Head2 Axial 0.99942 1.0000 0.99736
Sagittal 0.99802 1.0000 0.0000
Coronal 0.99935 1.0000 0.99074

Computing the Correlation

Measuring the linear dependence of two random variables represent the value of the

correlation coefficient. The correlation coefficient has a value ranges from (-1) to

(+1), where (+1) indicates to a total positive linear correlation (all data points lying

on a line for which set2 increases as set1 increases), (-1) to a total negative linear

correlation (all data points lying on a line for which set2 decreases as set1 increases),

and (0) to no linear correlation between the two random variables. Table 7.7 displays

the correlation coefficients, pvalue, lower and upper bounds for a 95% confidence in-

terval for each coefficient between Dice 3S, RMSE and HD. In this context pvalue

takes a value range from 0 to 1 for testing the hypothesis (i.e. null hypothesis) that

there is no relationship between the observed phenomena. The more smaller value of

pvalue means the corresponding correlation coefficient is considered more significant.

In other words, values close to 0 correspond to a low probability of observing the null

hypothesis. Numerous studies presented interpretation of the values of correlation

coefficients [247] but all such criteria are considered arbitrary to some extent [248].

The computations in the first part of Table 7.7 (i.e. between Dice 3S and RMSE)

lead to some observations. Firstly, the results indicate that there is a good correla-

tion between Dice 3S and RMSE (average=-0.7559) giving that we have a very

small number of points in each data set (17 values). This supports the fact that

our proposed overlap measurement correlates with one of the most widely accepted
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Table 7.7: Correlation coefficients, pvalue, lower and upper bounds for a 95% confi-
dence interval for each coefficient between Dice 3S, RMSE and HD.

Data set Correlation P-value L-bound R-bound

Dice 3S ∼ RMSE
Pelvis -0.6727 0.0031 -0.8715 -0.2838
Knee -0.8115 0.0001 -0.9296 -0.5425
Cubes -0.8838 0.0000 -0.9576 -0.7009
Dome -0.6558 0.0043 -0.8641 -0.2558
Average -0.7559 0.0018 N/A N/A

Dice 3S ∼ HD
Pelvis -0.6004 0.0108 -0.8389 -0.1684
Knee -0.1709 0.5119 -0.6021 0.3374
Cubes -0.5768 0.0153 -0.8279 -0.1331
Dome -0.6343 0.0062 -0.8545 -0.2211
Average -0.4956 0.1360 N/A N/A

RMSE ∼ HD
Pelvis 0.8803 0.0000 0.6927 0.9563
Knee 0.1741 0.5040 -0.3346 0.6042
Cubes 0.6698 0.0033 0.2789 0.8703
Dome 0.7117 0.0014 0.3512 0.8884
Average 0.6089 0.1271 N/A N/A

measures. Secondly, the correlation coefficient value is a negative value. The rea-

son of that is while the proportion of similarity ratio is getting bigger, the value of

Dice 3S increases whereas the value of RMSE decreases. The third observation is

the small value of pvalue (0.0018 as an average of the four data sets) which refers to a

low probability of observing the null hypothesis.

We mentioned in Section 7.1 that HD can sometimes produce misleading re-

sults. This interprets the reason of the relatively low values of the correlation be-

tween (Dice 3S and HD) and (Dice 3S and RMS) when compared to (Dice 3S and

RMSE). The pvalue that is generated when we computed the correlation between

(HD and Dice 3S) and (HD and RMSE) for the knee data set is very high (0.5119

and 0.5040) which indicates that the HD leads to misleading results in this case.

7.6 Discussion

The results that are generated by Dice 3S support the fact of the ability of this

measurement to avoid the drawbacks of the current overlap measurements. While
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most of the current overlap measurements finds the degree of similarity with regard

to the surface points, Dice 3S is able to measure the similarities not only with two

surfaces but even with solid models. Since Dice 3S applies the DSC so this makes

Dice 3S insensitive to outliers whereas some of the current overlap measurements are

sensitive.

The evaluation through slicing the object (dividing the object into layers) is ap-

propriate for the applications that use 3D-printing since the 3D-printing process takes

a 3D mesh and translates this model into individual layers [249, 42]. So the accuracy,

that we got for the similarity ratio and the physical distances between individual

slices, correlates with the accuracy that we will get when the object is manufactured

through the 3D-printing process.

Figure 7.5 displays a screen shot for the Matlab GUI tool that we created to run

Dice 3S. Table 7.3 and Table 7.4 in Section 7.5 presented some observations that

we are discussing here. The first observation is that the results that are generated

by Dice 3S are correlated with the results generated by the RMSE measure which is

considered one of the most widely accepted measure used in research. This correlation

reinforces the reliability of Dice 3S. The second observation is that the outcomes of

Dice 3S presented in those two tables are rational and reasonable in the context

of geometry and transformation. For example, the similarity ratio when the object

is rotated 15 degrees is less than the similarity ratio when the object is rotated 5

degrees, and the similarity ratio for the later is less than the similarity ratio when the

object is rotated 2 degrees (See as an example row#5, row#9 and row#13 in Table

7.4). Another example on the rationality of the outcomes, the similarity ratio when

the object is translated 2% is greater than when it is translated 5% and the later is

greater than when it is translated 25% (see as an example row#31-row#33 in Table

7.3). The third observation is that the complementary values generated by Dice 3S
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Figure 7.5: A screen shot for the Matlab GUI tool of Dice 3S.



CHAPTER 7. OVERLAP MEASUREMENT 117

could help in recognising the cause of mismatch and then could lead to help any

other alignment-algorithm to better alignment. For example (see row#14-row#16

and row#31-row#33 in Table 7.3 and the same rows in Table 7.4), when the object

is translated in the y-direction (i.e. sagittal view), the outcomes indicate that the

similarity ratio in sagittal view is the lowest when compared to the similarity ratio in

axial and coronal views. Another example (see row#2,row#6 and row#10 in Table

7.4), when the object is rotated about the x-axis (i.e. axial view), the outcomes

indicate that the similarity ratio in axial view is the highest when compared to the

similarity ratio in sagittal and coronal views.

With regard to the use of image filling; We present in Appendix A in Table A.1,

A.2 and A.3 the average similarity ratios with and without using the automatic fill of

images. There are two observations on these values. The first one is that the overlap

measurement becomes more sensitive when the automatic fill of images is deactivated

since the number of common white pixels becomes low comparing to the total number

of white pixels in the two images. The second observation is that the values generated

when the image fill is activated agree with the values generated when the image fill

is deactivated. This agreement is obvious in Table A.1, A.2 and A.3 for all rows

with just one exception in row#10 and row#11 in Table A.2 where the similarity in

row#11 is less than in row#10 (with-filling column) whereas the similarity in row#11

is greater than in row#10 (no-filling column). This can be understood when we know

that the similarity values in both rows are very close to each other as the difference

between the two values is less than 0.0006.

It is worth noting that Dice 3S is robust to partial volume effects (See Figure

7.6). That is because Dice 3S takes 3 perspectives (i.e. axial, sagittal and coronal)

into consideration when it measures the proportion of overlap between two objects.

This leads to more accurate results for partial volume estimate.
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Figure 7.6: The three different perspectives intersect the voxel space in different
positions producing more accurate results for partial volume estimate.

The standard deviation of the DSC for each image slice is supplied by Dice 3S

as a complementary value. High values of the standard deviation indicates that the

similarity ratio between the corresponding 2D images are spread out over a wide range

of values. This in turn means there are a proportion of outliers and then the figures

that display the similarity ratio for each slice should be investigated to recognise the

images which cause that.

The axial, sagittal and coronal analysis figures that are supplied by Dice 3S can

lead to recognise the regions/positions of mismatch or lower overlap. For example

the bar charts, shown in Figure 7.7, are produced by Dice 3S to find the proportion

of overlap between a 3D model of a head and an edited version of that model. To

simplify, a delineation of a head is shown in Figure 7.8(a) and the edited version

of that model is shown in Figure 7.8(b). Notice that the editing is performed over

the region that is shown in red colour. The slicing process in our approach generates

(102,61,74) images in axial, sagittal and coronal directions respectively. Having a look

over the three bar charts in Figure 7.7 it can be seen that there is a low proportion

of similarity on the left half of the top region of the head (displayed in red in Figure

7.8(b)). The first 50% (30 images) in the sagittal chart have a lower value of similarity



CHAPTER 7. OVERLAP MEASUREMENT 119

Figure 7.7: Bar charts generated by Dice 3S to find similarity ratios between a head
displayed in Figure 7.8(a) and another edited version of that head displayed in Figure
7.8(b). (left): axial, (middle): sagittal, and (right): coronal

(a) (b)

Figure 7.8: (a) Delineation of a head shows the axial, sagittal and coronal perspectives
(imported from [3] and edited) (b) The region that has a low overlap is displayed in
red.

than others which means a mismatch in the left half of the head, and the first 20% (20

images) in the axial chart have a lower value of similarity than others which means a

mismatch in the top region of the head. The proportion of similarity of the images in

the coronal direction show that all the images have convergent values which indicates

that the problem does not occur at specific region when we direct from the front of

the head to the back.
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7.7 Summary

This chapter presented a model to measure the 3D-overlap ratio between medical

volume images. The proposed overlap measurement (Dice 3S) plays a key role in

the process of quantifying the quality of the image segmentation and registration. It

has a number of characteristics; firstly it presents a figure-of-merit to quantify the

proportion of overlap between medical volume images. Secondly, it accepts as inputs

two surfaces, two 3D-grid, or one surface and one 3D-grid. Thirdly, it gives comple-

mentary figures of statistical use that lead to recognise the amount and positions of

regions of match and mismatch. Fourthly, it examines the overlap ratio taking the

axial, sagittal and coronal planes into consideration which makes it convenient for

medical applications. Fifthly, it is insensitive to outliers which makes this measure-

ment of vital importance for medical images in particular. Sixthly it does not need

to orient or position the objects under-evaluation in specific pose. It takes the two

objects as they are and starts the evaluation without the need for any initialisation

or specific setting and furthermore it is able to locate geometric errors on a highly

curved surfaces.

An intensive evaluation, over six different data sets with different test cases, has

been performed to validate the outcomes of Dice 3S. The values that were generated

by Dice 3S were compared with the values that are generated by other three widely-

accepted overlap measurements. The correlation and rationality of the outcomes of

Dice 3S are evident. The analysis that we presented in this study indicates that

Dice 3S presents complementary values that describe the regions of overlaps with

regards to the axial, sagittal, and coronal planes which makes this measurement

convenient for medical volume images.

Down-sampling (i.e. size-reduction) of medical volume images is a critical issue

since high-density volume images need high resources (memory, graphic cards, CPU,
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...) and since over-downsampling can decrease the quality of the volume image.

We employed Dice 3S to evaluate the effect caused by the Quadric Edge Collapse

Decimation technique and the Uniform Mesh Resampling technique, and to find the

optimal value of the parameter α in Poisson Surface Reconstruction technique. The

results of these experiments are displayed in Appendix A.



Chapter 8

Pre-clinical Trial

The evaluation of segmentation of CT medical images to construct CT-derived models

is gaining importance since it is required in many applications such as radiotherapy

treatment, the diagnosis of malignant tumours and guiding surgical and remedial

procedures. This chapter presents a pre-clinical trial of an automatic segmentation

pipeline that is the main component in a system designed to automatically generate

a 3D model that in turn can be printed to create an immobilisation shell. The

focus of this chapter is to introduce a novel pipeline that can be used to evaluate

the accuracy of segmenting a CT volume by comparing to a 3D ground-truth model

acquired using a laser scanner. Section 8.1 presents an overview on what has been

used in the previous studies as a ground-truth. Section 8.2 explains in detail the steps

of the proposed pipeline and how it can be employed to evaluate the accuracy of the

segmentation methods. The experimental work is presented in Section 8.3 and the

results are displayed in Section 8.4. Section 8.5 draws a conclusion for this chapter.

8.1 Introduction

This chapter introduces a novel pipeline that can be used to evaluate the accuracy

of medical image segmentation techniques when a 3D mesh is employed as a ground-

truth (e.g laser-scan mesh). In terms of selecting a ground-truth, there are numerous

122



CHAPTER 8. AUTOMATIC PIPELINE FOR EVALUATION 123

studies that use a 2D manual segmentation as a ground-truth to evaluate the accu-

racy of the segmentation process for CT-derived models. For example: [250] used

the manual segmentation as a ground-truth to segment and reconstruct a newborn’s

skull, [251] to segment the kidney into multiple components, [252] for segmentation of

muscle and fat tissues from CT images to estimate body composition, [253] for crown

segmentation from CT images with metal artefacts, [254] to segment the hematoma

region from CT images and [255] for 3D medical image segmentation.

There are many other studies that used real physical measurements as a ground-

truth using a calliper or a coordinate measuring machine and compared them with

linear measurements of the images. For example: the authors in [256] used linear

measurements to compare the depth and diameter of simulated bone defects in an

acrylic block and a human mandible with predetermined machined dimensions to

validate whether Cone Beam Computed Tomography (CBCT) measurements were

precise. In [257], a geometric measuring object made of polymethylmethacrylate

whose geometry is exactly known was used to determine the geometric accuracy of

CBCT and to evaluate their convenience for implant planning. In [258], the authors

determined the accuracy of measuring linear distances between landmarks commonly

used in orthodontic analysis on a human skull using two CBCT systems and compared

their readings with physical measures using a calliper. A calliper was used in [259]

to evaluate the accuracy of the linear measurements obtained in CT images when

compared with measurements obtained in dry skulls. In [240], three 3D scanning

systems were evaluated using the physical linear measurements as a ground truth

to evaluate the accuracy of standard anthropometric linear measurements. Other

examples of using real physical measurements as a ground-truth include [260, 231, 261]

There are also many other studies which employed the laser-scan mesh as a ground-

truth as it is presented in Chapter 3. Examples of those studies include [80, 81,
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82, 83, 84, 85, 87, 88, 89, 90, 91]. Manual segmentation is time consuming and

prone to error. Real physical measurements do not lead to accurate results in our

research project since attempting to accurately measure the human head would be a

challenging task. On the other hand, laser scanning is a fast process when compared

to manual segmentation, not subjective as is the case in manual segmentation, and

it can lead to an accurate representation given the precision of scanners available on

the market.

8.2 The Proposed Pipeline

The proposed pipeline consists of various steps that produce in the end a value which

represents the ratio of similarity between the two input models. The key to our

pipeline is the process of generating 2D slices from a 3D mesh (i.e. laser-scan mesh).

The generated 2D slices can then be compared with the stack of CT images. Since

the CT-derived model and the laser-scan model may be completely misaligned, have

different image resolution and/or different point-set densities, our pipeline handles

all of these differences in order to produce an accurate alignment between the two

models. This pipeline employs the whole 3D model surface for registration and not

only certain landmarks. In addition to that, this pipeline presents a standardized

methodology that can be used to assess the accuracy of various CT scanners when a

specific segmentation approach is used.

In order to convert the 3D laser-scan mesh to a stack of 2D slices, the pipeline

applies plane/triangle intersection in order to intersect the geometry of the scanned

object with the slicing plane to obtain 2D slices from the 3D model. A graphical

representation of the pipeline is presented in Figure 8.1. This pipeline is applied to

align and evaluate a stack of 2D CT images of an object (normally saved in DICOM

file format) and a 3D mesh acquired for that object via a laser scanner (saved in an stl
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file format). The output produced by this pipeline is a ratio (a number between 0 and

1) which measures to which degree the CT-derived model is similar to the laser-scan

model.

8.2.1 Reading a stack of 2D CT images and constructing a
3D model

The first step in our pipeline includes reading a group of 2D CT images, building a

3D volume that represents the CT-scanned object to which the CT slices belong and

surface reconstruction. Surface reconstruction techniques are widely used in medical

applications to build 3D models [262]. This step includes a group of sub steps (shown

in Figure 8.2 and explained in next paragraphs).

2D Image Segmentation

This step involves Implementing a 2D image segmentation technique to convert the

images to binary. We used Otsu’s method [104] to produce black/white images since

the data sets that are being used represent homogeneous surfaces which should be

easily segmented by Otsu’s method.

Automatic Cropping

In this step an automatic preprocessing is performed by cropping segmented images

to remove unrelated-components from the image that do not form a part of the object

like the couch and most of the pixels that form the background of the image. This

is done automatically by scanning each segmented image form the top most row, the

left most column and the right most column to find the area that forms the borders

of the target object. The next step is to search for the bottom border by finding

the pixels that represent the couch which normally occupy most of the width of the

image.
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Figure 8.1: A schema represents the pipeline of the proposed approach
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Figure 8.2: The first step of the pipeline includes image segmentation and surface
reconstruction.

Applying the Marching Cubes

We then use the Marching Cubes algorithm [19] to build a 3D model of the scanned

object. The basic function of the Marching Cubes algorithm is to compute a triangu-

lated mesh of the isosurface within a 3D matrix of scalar values at a specific isosurface

value. The x, y and z coordinates of the stack of CT slices should be prepared before

sending them to the Marching Cubes algorithm. This implies performing a mesh grid

operation in which we produce a 3D coordinate array. It is of high importance in this

step to consider the ”pixel-spacing” and the ”spacing-between-slices” parameters of

the CT-scanner in order to produce an accurate 3D coordinate array which will be sent

later to the Marching Cubes algorithm. Pixel-spacing is a value generated from the

CT-scanner that specifies the physical distance measured between the centres of two

adjacent pixels (see Figure 8.3) where spacing-between-slices gives the distance be-

tween two adjacent slices (perpendicular to the image plane). The triangulated mesh

returned by the Marching Cubes algorithm includes a structure of vertices (V) and

another structure of faces (F). Structure (V) specifies triangle vertex values whereas

structure (F) defines which vertices to connect. The precise description of how the

Marching Cubes algorithm generates triangles is presented in [19].
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Figure 8.3: Graphical representation of the concepts of pixel-spacing and spacing-
between-slices.

Creating Triangulated Mesh

This step involves creating an stl (Stereo Lithography) file using the returned faces

(F) and vertices (V) produced by the Marching Cubes algorithm. Stl file is a trian-

gular representation of a three dimensional surface geometry. The surface is broken

down into a series of small triangles (facets). Each facet is described by a perpen-

dicular direction, named normal, and three vertices representing the corners of the

triangle. Most of all today’s 3D scanners are capable of producing output using the

stl file format and this format is supported by many software packages, commonly

used in computer-aided manufacturing (CAM), computer-aided design (CAD), rapid

prototyping and 3D printing. Due to this we decided to build an stl file from the

stack of CT slices and then we can let the two models go through the same pipeline.

The stl format can be stored either in ASCII or in binary representation. Binary files

are more common, since they are more compact. Table 8.1 shows the general format

of a binary stl file.

All of the steps of our pipeline are performed automatically with no need for

human intervention.
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Table 8.1: The syntax for a binary stl file

UINT8[16] Header
UINT32 Number of triangles

for each triangle
REAL32[3] Normal vector
REAL32[3] Vertex 1
REAL32[3] Vertex 2
REAL32[3] Vertex 3
UINT16 Attribute byte count
end

Figure 8.4: The second phase of the pipeline: Extracting the vertices.

8.2.2 Extracting the vertices from the triangulated mesh and
simplifying it

After the end of the first step, two triangulated meshes each in stl file format will

be produced. The first mesh is a 3D model generated from a stack of 2D CT slices

and the second one is the laser-scan model, see Figure 8.4. In order to align and

register these two models, we extract the vertices from each mesh and then remove

duplicated vertices, a process named simplifying the mesh. Removing duplicated

vertices will reduce the computation required for the alignment algorithm. The details

of simplifying the mesh are presented in Chapter 7.

We present here just a simple example that shows how simplifying the mesh can

decrease the size of the vertices array to 1/3 of its original size (see Figure 8.5). In the

example, the vertices array (V ) consists of 12 rows before removing the duplicated

values and the number of rows becomes 4 rows after simplifying the mesh (see Figure

8.6).
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Figure 8.5: A simple mesh includes 12 rows of vertices before simplifying (imported
form [4] and edited).

Figure 8.6: The same mesh in Figure 8.5 but after simplifying it to be composed of
4-rows.
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8.2.3 Alignment, Slicing, and Measuring the Overlap Ratio

We now have two groups of non-duplicated vertices. The first group belongs to the

model generated from CT slices whereas the second group of vertices belongs to the

laser-scan model. Our adjusted ICP algorithm, which we presented in Chapter 6, is

being used to align the CT-derived model and the laser-scan model.

The next step includes slicing the aligned laser-scan mesh by intersecting its trian-

gles with the z-planes constructed at the same locations as the slices of the CT-derived

model in order to be able to match each slice from the laser-scan model with its cor-

responding slice from the CT-derived model.

The vertices that we have so far represent the corners of 3D triangles which com-

pose the surface of the mesh of the aligned laser-scan model. It is necessary at this

stage to calculate the line segments which result from intersecting Z-planes with each

triangle from the set of the triangles’ vertices of the laser-scan model. Z-planes are

set at the same locations as the CT slices. Notice that each plane is defined by a

point lies on it Q (which is located in the CT slices) and a normal vector N , and each

triangle is defined by three vertices (P1, P2 and P3).

To calculate the intersection segment between a plane and a triangle, we firstly find

in which side the vertices of each triangle (P1, P2 and P3) lies regarding to the plane

according to equations (8.2.1) (8.2.2) and (8.2.3). The equations apply dot product

to determine the side in which each corner of each triangle lie regarding to the plane.

For example, if d1 and d2 have the same sign, then that means P1 and P2 lie in the

same side regarding to the plane, whereas if they have different signs then that means

P1 and P2 lie on different sides. Knowing on which side each triangle vertex lies will

lead us to the next stage in which we calculate the intersection segment between a

plane and a triangle. The details and the algorithms that we derive to apply the

plane/triangle intersection and to project the intersection points into image pixels
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Figure 8.7: Examples of laser slices and its corresponding slices after filling.

are presented in Chapter 7.

d1 = (P1−Q).N (8.2.1)

d2 = (P2−Q).N (8.2.2)

d3 = (P3−Q).N (8.2.3)

Since laser-scan models provide just the surface of the scanned object whilst the

CT scanner provides the internal structure of the scanned object in addition to the

surface, we filled the images and then applied the overlap measurements. Figure 8.7

shows three examples on the filling operation of images obtained from the laser-scan

model after applying the slicing process over that laser-scan model.

The overlap measurement is then performed between each slice from the stack of

CT slices and its corresponding slice from the stack of laser-scan slices. The Dice

measurement is used to find the level of similarity between the two corresponding

slices. We define a measure that represents the total mean of similarity between the

two groups of images according to the Dice measurement. This mean value is shown

in (8.2.4) where n represents the total number of compared slices.

Avg −Dice =

∑n
i=1Dice(CTSlice(i), laserSlice(i))

n
(8.2.4)

Since the 3D mesh that is generated by laser scanners may have some gaps and

may suffer from incompleteness in some regions, then we define in our pipeline an
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Figure 8.8: Two regions of interest defined by the user.

optional step in which we allow to define a region of interest (ROI). This means to

define a window (region) over an area of a slice so the overlap measurements will be

performed over just these defined regions. If, for example, the user is interested on

the area that lies on the bottom right of the image, then the overlap measurement

will be calculated over those pixels that lie on that region of interest only (see Figure

8.8).

8.3 Experimental Work

There are three data sets used in the experiments of this chapter: the cubes, dome

and the Cantonese head. The description, properties and sources of these data sets

are presented in Chapter 3. It is worth mentioning here that we have two scans for

these objects (a CT scan and a laser scan).

This part will present the experiments that were applied over the three objects.

Figure 8.9 shows the first steps that we did over the stack of CT slices to build a 3D

triangulated mesh for each object. We started the process by implementing Otsu’s

segmentation algorithm to get segmented binary images (see Figure 8.9 (b), (f) and

(j) ), and then we applied the automatic preprocessing steps to crop images (see

Figure 8.9 (c), (g) and (k)). After that we applied the Marching Cubes algorithm

over the stack of segmented images to build a 3D model for each object and converted
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 8.9: Building 3D models from 2D medical images. (a-d): head (e-h): cubes
and (i-l): dome. The first column displays the original images (DICOM images),
the second column displays the segmented images, the third column displays the
segmented images after the automatic cropping and the fourth column displays the
constructed 3D models.

that 3D model to stl file format as depicted in Figure 8.9 (d), (h) and (l). We then

converted the two meshes to vertices and removed duplicated vertices. The details of

this process were presented in Section 8.2.

After that, we moved to apply the adjusted ICP algorithm over the two models

(i.e. the CT-derived model and laser-scan model). The two models, as displayed

in the figures of Chapter 6, were completely misaligned, having different coordinate

systems, different image resolution and different point-set densities. Applying the

adjusted ICP algorithm achieved a high level of superimposing and alignment between

the two models. More details and readings on applying the adjusted ICP over these

objects are presented in Chapter 6.

We then calculated the plane/triangle intersections between the set of facets of the

laser-scan model and the set of planes which are imported from CT images as it was

described previously in Section 8.2. Finding those intersection segments formed the

base to perform slicing of the aligned 3D laser-scan model. After that, we converted

all laser slices to binary images.
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Then we filled the slices as presented in Section 8.2 Figure 8.7 and calculated the

overlap measurements between the two stacks of slices. The results of this phase are

presented in the next section.

8.4 Results

As stated before, the reliability of the similarity value generated by the proposed

pipeline is affected by the accuracy of the alignment process between the CT-derived

model and the laser-scan model. The experimental results of applying the adjusted

ICP are presented in Chapter 6. We will just present here the final readings that are

generated by the pipeline to evaluate the accuracy of segmentation.

The average values of the Dice similarity measure were calculated according to

Equation (8.2.4). Table 8.2 displays the average Dice value, standard deviation and

the 90th percentile for the three objects. It is obvious that all the three objects

achieved high level of Dice value which supports the claim that surface models derived

from CT data are an excellent representation of the real scanned object. Notice that

although the surface of the head contains many more complex structures, engravings

and curvatures, it still achieved 96.96% which made us very assured that the proposed

pipeline presents a robust approach to evaluate the accuracy of surface models built

from CT images. We present in the table the 90th percentile and the low values of

the standard deviation to indicate the stability of results over the whole collection

of slices. Moreover, the success of applying this pipeline over three different objects

each with its different characteristics increases the reliability of the output generated

from the proposed pipeline.
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Table 8.2: Dice value, Standard deviation and the 90th percentile for the three objects.

Measurements head cubes dome
Average Dice value 96.96% 99.40% 98.61%
Standard deviation 0.073341 0.00268 0.022607
90th percentile 0.9844 0.99689 0.99039

8.5 Conclusion and Discussion

This chapter presented a fully automatic approach that can be followed to evaluate the

accuracy of CT-derived models. The experimental work and results indicated clearly

that CT-derived models achieved very high values of similarity with the ground-

truth. While most of the published studies in this field either require 2D manual

segmentation or use linear physical measurements for the purpose of providing a

ground-truth, the proposed pipeline presents an automatic approach for evaluation

of CT-derived models using 3D triangulated-meshes acquired by a laser scanner as

a ground-truth. Using a laser-scan model as a ground truth saves much time and

effort. Manual segmentation and/or physical measurements are time-consuming and

prone-to-error since they are done by humans where the recent advances in laser

scanning technology makes it strongly relevant to be used as a ground-truth. The

chapter presented a detailed description about the proposed approach in the form of

a pipeline which shapes a framework that can be followed by researchers. MATLAB

R2014a Image Processing Toolbox was used in implementing this pipeline.

Since the first element that affects the overall accuracy of the CT-derived models

is the accuracy of the 2D-segmentation technique, then the proposed pipeline can be

used for evaluation of the accuracy of 2D segmentation techniques. Applying differ-

ent segmentation techniques in the proposed pipeline will produce different output

similarity values. A higher similarity value means a higher matching between the CT

segmented-images and the ground truth, and consequently means a more accurate 2D
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segmentation technique convenient for extracting the surface of the scanned object.

The two inputs of the proposed pipeline could be two meshes scanned by two

different 3D acquisition devices. Consequently, we can evaluate the accuracy of a 3D

derived mesh produced by one of these devices assuming that the mesh produced by

the other device forms the ground-truth. Figure 8.10 displays the pipeline that can

be used to evaluate the accuracy of a mesh generated from a 3D acquisition device

compared to another mesh generated from another device which has a higher resolu-

tion (i.e. ground truth). This pipeline is similar to the pipeline presented in Figure

8.1 except that this pipeline skips the steps that are responsible of segmentation

and building a mesh from the stack of 2D slices, and it performs the plane/triangle

intersection for both inputs not for only one input.
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Figure 8.10: A proposed pipeline that can be used if two meshes are the inputs.



Chapter 9

Clinical Trial

This chapter starts by presenting, in Section 9.1, an overview of the clinical trial

which forms a part of this thesis. The basic features of this trial and the design and

methodology of it are also described. Section 9.2 describes the experimental work

which was designed to evaluate the outcomes of constructing an immobilisation mask

for the “Perspex Mask” data set. A detailed discussion is presented in Section 9.3

on the results generated and the possible sources of inaccuracies when applying our

pipeline. Section 9.4 summarises the main points of this chapter. Related documents

to our clinical trial are presented in Appendix B.

9.1 Overview of the Clinical Trial

This section presents an overview of the clinical trial and its basic features. Our

clinical trial is registered under the permission and approvals of the (Health Research

Authority, NHS, UK) and the (Research Ethics Committee (REC), Yorkshire & The

Humber, UK) and sponsored by the University of East Anglia, UK. It was given

the following ID under the Integrated Research Application System (IRAS project

ID:209119) and the following reference under the Research Ethics Committee (REC

reference:16/YH/0485). Our clinical trial is posted online (see [263, 264, 265]). Table

9.1 illustrates some basic information about this clinical trial.

139
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Table 9.1: Basic description of our clinical trial.

Title of the trial Acquisition of 3D facial geometry of patients’ scheduled for
RT 1.0

Category Basic science study involving procedures with human partic-
ipants.

Site of the trial England
Principal inclu-
sion criteria

Patients undergoing radiotherapy treatment for tumours af-
fecting their head and neck.

Principal exclu-
sion criteria

Age not in 18-69 years and patients who are not able to give
written informed consent (in English).

Identification
process

The oncology department, Norfolk and Norwich University
Hospital will identify patients who are planned to have head
and neck radiotherapy.

Trial’s Objective To compare 3D models of facial geometry built from CT and
laser-scanner data sets in terms of accuracy and precision.

Trial’s Outcome providing patient specific data that will in turn enable al-
gorithms developed to be quantitatively evaluated and com-
pared, thus allowing us to determine if the approach is clin-
ically viable.

Methodology

The stages of the clinical trial are represented as a flowchart in Figure 9.1. Patients

will follow a normal treatment pathway, using an immobilisation shell manufactured

normally (i.e. ‘softdrape’ or ‘hard-shell’). Once the mask has been manufactured

(by mould room technicians) it will be scanned (in the mould room) using the laser

scanner. Researchers at UEA will need a copy of (pseudonymised) patient’s CT data.

This will be held at the School of Computing Sciences, UEA (for more information

see the clinical trial protocol in Appendix B).

Laser Scanning of patients will take place at the Norfolk and Norwich University

Hospital (NNUH) NHS Foundation Trust. A researcher from UEA will perform the

scan, supervised by a radiographer or nurse from NNUH. The participant will be

asked to sit in an office chair and participant’s head will be scanned using a hand

held laser scanner. The laser scanning session will take about 15 minutes and during
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Figure 9.1: Flowchart represents the stages of the clinical trial.

this time participant will need to wear an eye mask. The process can be completed in

stages with a break of 2-3 minutes between each session. The hand held laser scanner

will be moved around the participant and the distance between participant’s head

and the laser machine will be in the range 20-60 cm (for more information about the

laser scanning session see the participant information sheet in Appendix B).

The low power laser used in the scanner is no more powerful than a laser pointer.

The laser machine is CE marked which means that the machine complies with the

essential requirements of the relevant European health, safety and environmental pro-

tection legislation. This procedure will be applied one time only for each participant.

Participant’s eyes will be covered while being scanned.

Objectives

The main three questions that this trial aims to answer:

1. To determine if a computer vision system can automatically generate 3-D printed



CHAPTER 9. CLINICAL TRIAL 142

immobilisation masks having performance comparable to existing head and neck im-

mobilisation systems from a CT scan?

2. To compare 3-D models of facial geometry built from CT and laser-scanner data

sets in terms of accuracy and precision?

3. To identify if patients find the experience of making a facial mould using plaster

of paris distressing and painful?

Outcome

The potential broad outcomes for the trial which will reflect the research question

aims:

1. We will place the mask on the patients face (virtually, using 3-D computer mod-

elling) and report errors measured between the immobilisation shell and the patients

skin. This will enable us to benchmark a range of algorithms used to segment the

CT and extract a surface contour that could be used to print a shell.

2. By comparing results of computer modelling with those reported for thermoplastic

masks we can determine if the approach is viable.

3. Patient responses to the questionnaire data will provide limited insight into their

experience in the mould room.

Although the ethical and HRA approval that we have got relates to scanning

patients and masks, the work reported in this chapter only relates to a mask (i.e.

currently no patients have been scanned due to the unavailability of the laser scanner).

More details and documents of our clinical trial are presented in Appendix B.

9.2 Experiments and Results

Although our Dice 3S measurement, presented in Chapter 7, provides a ‘figure of

merit’ that can be used to assess the degree of agreement between the models it

does not provide any information about the degree of immobilisation provided by the
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mask. To address this we also provide absolute measurements of the space between

the surfaces of the two models.

We present in this section two approaches in order to evaluate the accuracy of the

outcomes that were generated when we applied our experiments over the “Perspex

Mask” data set. In the first approach we use our pipeline that was presented in

Chapter 8 to evaluate the similarity between the CT-derived model and the laser-

scan model. In the second approach we measure the distances (in pixels) between the

external border of the CT slices and their corresponding external borders of laser slices

in order to have a good conception about the accuracy of physical measurements.

Evaluation through our Pipeline

As explained in previous chapters, our pipeline presents statistics which represent

the degree of similarity ratio between the CT slices of the patient’s head and its

corresponding slices calculated from the laser-scan model. The overlap measurement

that is used by the pipeline to find the similarity ratio between each two corresponding

slices is the DSC. Table 9.2 shows the statistics generated by our pipeline to represent

the similarity ratio between the CT slices and the slices that are calculated from the

laser-scan model for the “Perspex Mask” data set. The readings in this table shows

that the average similarity ratio equals 96.56% which indicates to a relatively high

degree of similarity between the two groups of images. Figure 9.2 displays a histogram

representing the similarity ratio slice by slice for the “Perspex Mask” data set. The

results shown in the histogram support the readings that we got in Table 9.2 in which

we notice that the standard deviation has a low value which indicates that the values

of similarities between corresponding images are close to the mean. This in turn

increases the robustness and reliability of the outcomes.
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Table 9.2: Statistics generated by our pipeline to represent the similarity ratio be-
tween the CT slices and the slices that are calculated from the outer surface of the
mask for the “Perspex Mask” data set.

Avg. Similarity ratio Max. value Min. value Standard deviation 90th percentile
96.56% 97.77% 94.62% 0.00796 97.29%

Figure 9.2: A histogram representing the similarity ratio slice by slice for the “Perspex
Mask” data set generated by our pipeline.

Evaluation through Physical Measurements

Figure 9.3 displays a flowchart which represents the procedure that we follow to

calculate the physical distances between the surface of the CT-derived constructed

model and the laser-scan model. In each iteration of this procedure two images are

entered as inputs. The first input represents a filled segmented CT image (see Figure

9.4(left)) and the second one represents its corresponding filled image calculated from

the laser model (see Figure 9.4(right)).

The next step in the procedure is to get the border of each image. This process

involves creating a binary image having ones where the process finds edges and zeros

elsewhere. We used the Sobel approach to detect edges in both images. Figure 9.5

shows the two images displayed in Figure 9.4 after getting the borders. We then
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Figure 9.3: A flowchart represents the procedure to calculate the physical distances
between the two surfaces (CT-derived model and laser-scan model).

Figure 9.4: (left) A CT image segmented using DRLSE technique and filled, (right)
Its corresponding image computed from laser model and filled.
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Figure 9.5: (left) A CT image after detecting the edges, (right) Its corresponding
laser image after detecting the edges.

(a) slice 1 (b) slice 2

(c) slice 3 (d) slice 4

(e) slice 5

Figure 9.6: Screen shots of five composite slice images which are spaced apart in
different locations on the face. The red colour represents the border of CT image, the
green colour represents the border of laser image, and the yellow colour represents
the pixels where the two images are superimposed.

move in the procedure to create a composite image in which the two images are

superimposed (overlaid). We present in Figure 9.6 screen shots of five composite slice

images, which are spaced apart in different locations of the face, and selected from

the two models (the laser-scan model and the CT-derived model). The red colour

in the figure represents the border of the CT images, the green colour represents the

border of the laser images, and the yellow colour represents the pixels where the two

images are superimposed.

We measure the distances between the external border of CT slices and laser slices

by investigating the pixels in the composite images. Figure 9.7 displays zoomed-in

regions of a composite image. This display for the pixels enable us to easily find
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the physical distances between the borders of the two images since any CT image

(DICOM format) has a ‘pixel-spacing’ property which specifies the physical distance

between the centres of two adjacent pixels. The pixel-spacing equals 0.9765 mm in

our “Perspex Mask” data set for both directions (i.e. x-direction and y-direction)

which means that the real physical distance between the centres of each adjacent

pixels is 0.9765 mm.

In order to derive statistics and generate histograms to represent the total num-

ber of pixels that have specific distances between the two corresponding images, we

followed the approach, which is displayed in Figure 9.8. Since the CT scan images

represent the patient’s head where the laser-scan images represent the external surface

of the perspex mask (immobilisation mask) then we expect the border of the laser

image to be wider than the border of the CT image. We labelled the case shown in

Figure 9.8(a) with (-1) which indicates that the CT border for that pixel is wider than

the laser border for its corresponding pixel. When the two borders are superimposed

over a specific pixel we labelled that case with (0) which indicates that the distance

between the two borders equals zero as shown in Figure 9.8(b). When the laser bor-

der on a specific pixel is adjacent and wider than the CT border on its corresponding

pixel, as the case in Figure 9.8(c), we labelled this case with (+1) which means the

the laser border is wider than the CT border with only one pixel. This means that

the laser border is 0.9765 mm wider than the CT border at that pixel location since

the ‘pixel-spacing’ equals 0.9765 mm in our case. This implies that the laser border

is wider (2 x 0.9765 mm) in 9.8(d) and wider (3 x 0.9765 mm) in 9.8(e) than the CT

border at that locations.

Table 9.3 displays readings for five composite images which are spaced apart in

different locations of the face. The table shows, for each image, how many pixels

are labelled with -1, 0, +1, +2, ..., +7 and what is the percentage of this label over
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(a) Region1

(b) Region2

(c) Region3

Figure 9.7: Investigation for the pixels in different regions of a composite image. Red
squares belong to the border of the CT image, green squares belong to the border
of the laser image, and yellow squares represent pixels where the two images are
superimposed.
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(a) (b) (c) (d) (e)

Figure 9.8: Representation of the approach that is used to find the distances between
the borders in composite images. Red squares belong to the border of the CT image,
green squares belong to the border of the laser image, and yellow squares represent
pixels where the two images are superimposed.

the whole set of labelled pixels. Figure 9.9 shows the measurements in a form of

histograms to represent the distances between the border of the laser slice and the

border of the CT slice. It is obvious in the table and histograms that the majority of

pixels have either a distance equal to one pixel (i.e 0.9765 mm) or a distance equal to

two pixels (i.e. 2 x 0.9765 = 1.953 mm). The average percentage, for the five images,

of the pixels which have a distance labelled (+1) or (+2) is 87.62% which means

in other words that the laser border is wider than the CT border with a distance

equals either (0.9765 mm) or (1.953 mm) over 87.62% of the whole set of points.

This difference in distance represents the thickness of the mask. More discussions

and explanation about these measurements are presented in Section 9.3.

As we presented in Section 7.6, the evaluation through slicing the object (dividing

the object into layers) is appropriate for the applications that use 3D-printing since

the 3D-printing process takes a 3D mesh and translates this model into individual

layers [249, 42].

9.3 Discussion

In this section we address some issues that may affect, one way or another, the

accuracy of the outcomes that we got when we applied our whole pipeline over the



CHAPTER 9. CLINICAL TRIAL 150

(a) image (b) image 2

(c) image 3 (d) image 4

(e) image 5

Figure 9.9: Histograms represent the total distance between the laser slice and the
CT slice in pixels.



CHAPTER 9. CLINICAL TRIAL 151

Table 9.3: Values represent how many pixels labelled with {-1, 0, +1, +2, +3, +4,
+5, +6, +7} and the percentage of this label over the whole set of labelled pixels.

Image# -1 0 +1 +2 +3 +4 +5 +6 +7
Image1
total 1 15 123 76 10 0 0 0 0
percentage 0.44% 6.67% 54.67% 33.78% 4.44% 0.00% 0.00% 0.00% 0.00%
Image2
total 0 0 120 92 6 5 3 3
percentage 0.00% 0.00% 52.40% 40.17% 2.62% 2.18% 0.00% 1.31% 1.31%
Image3
total 0 0 59 122 35 12 0 0
percentage 0.00% 0.00% 25.88% 53.51% 15.35% 5.26% 0.00% 0.00% 0.00%
Image4
total 0 9 75 122 13 3 0 0
percentage 0.00% 4.05% 33.78% 54.95% 5.86% 1.35% 0.00% 0.00% 0.00%
Image5
total 0 4 86 92 13 0 1 4
percentage 0.00% 2.00% 43.00% 46.00% 6.50% 0.00% 0.00% 0.50% 2.00%

“Perspex Mask” data set.

• The data sets that we got from our clinical trial are for patients who have

treatment in the neck region. This implies that the radiotherapy treatment

plan for those patients does not involve scanning the patients to the top vertex

of the skull. Those patients are scanned as far as the supraorbital ridge (see

Figure 9.10).

According to that and since the alignment process (i.e. registration) works for

two similar objects, the laser-scan model should be pre-processed by cutting

(cropping) the region which represents the top region of the head since the CT-

derived model of the “Perspex Mask” is incomplete (i.e. missing a group of

slices representing the top region of the head). This cutting for the laser-scan

model is performed using open-source software (MeshLab) for processing and

editing 3D triangular meshes. As the cutting process is not exactly accurate

then that may have an effect on the final outcome of the whole pipeline.

• One of the common problems in medical imaging which complicates the seg-

mentation process is the partial volume effects (PVE). PVE, also named as

tissue-fraction effect, happens when multiple tissues are part of a single pixel
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Figure 9.10: Constructed model generated from the CT corresponding to the patient
for whom the perspex mask was made. The scan does not involve scanning the
patients to the top vertex of the skull.

or voxel due to the finite spatial resolution of the imaging device. This will

result in a blurring of intensity across boundaries [266]. PVE depends on the

characteristics of the imaging device, scanned object and activity distribution

[267]. PVE can cause errors in volume measurement in the range of 20%-60%

[268, 269].

• Automatic segmentation, especially facial soft tissue, is still a complicated pro-

cess due to the fact that the human head is one of the most complex parts of

the body because it contains thin layers of tissue, which contain muscles that

are often touching each other and this complicate the morphological character-

istics of facial tissues [270]. Although there are several studies on brain tissue

segmentation, there are only a few studies related to facial soft tissue [175]. The

most salient drawback of those studies is that most of them involve manual seg-

mentation [271, 272], but, as it known, manual segmentation is time consuming

and prone to inter-expert and intra-expert variability [175].

• Medical images are prone to be affected by different types of noise sources

[273, 274] such as the quantum structure of the X-ray beam, the structure of

the film, or digital receptors. This image noise may affect the accuracy of the

segmentation process and consequently may affect the accuracy of the whole

process to construct our immobilisation mask.
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• The thickness of the Perspex mask, see Figure 9.11, that we have scanned using

the hand-held laser scanner is variable in different regions. We have measured

the thickness of that mask in the mechanical workshop of University of East

Anglia using a digital calliper and found that the thickness varies from region to

region. The thickness values range from [1.25 - 2.13]mm which means that the

mesh generated by scanning the outer surface of the mask does not represent

the exact dimensions of the patient’s head.

Figure 9.11: A photo shows the Perspex mask that we have scanned by the hand-held
laser scanner.

• Since we use the Marching Cubes algorithm to construct the CT-derived model

and since the exact position of the vertex along the edge is computed through

linear interpolation in marching cubes, then this interpolation may have an

effect over the whole process.

• The immobilisation masks, including the Perspex mask, are normally having

some extension to be used for fixation purposes (see the red circle in Figure

9.12). On the other hand, the CT-derived model is constructed for the head

itself without any other extensions. Consequently the two meshes (i.e. the CT

mesh and the laser mesh) do not represent similar objects. This point requires

some pre-processing for the laser mesh and this in turn may lead to a loss in

accuracy through the whole process.

• The process of slicing the laser mesh into 2D images, which was presented in
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Figure 9.12: A photo shows the Perspex mask and the red circle shows the extension
that is used to fix the mask over the couch.

Chapter 7, needs the use of quantisation and mathematical rounding. This may

define some inaccuracies in the final outcome.

• The existence of holes/gaps/incomplete regions on the surface of the laser mesh,

see Figure 9.13, may affect the the accuracy of the whole pipeline.

Figure 9.13: A photo shows the laser mesh acquired for the Perspex mask and the
red circles show some examples of incomplete/gaps on the surface of the mesh.

9.4 Summary

This chapter presented at the beginning a brief description of the clinical trial and its

main features. It moved then to illustrate two approaches which are used to evaluate

the accuracy of the outcomes that were generated when we applied our experiments

over the “Perspex Mask” data set. In the first approach, we used our pipeline to

evaluate the degree of similarity between the CT constructed model and the ground-

truth (laser mesh). The pipeline produced figures and statistics which indicated that

there is a relatively high match between the two models. In the second approach, we

investigated and calculated the distances between the borders of the CT images and



CHAPTER 9. CLINICAL TRIAL 155

the borders of images got from the laser model. This investigation of pixels indicated

that about 87% of points have distance-between-borders equals either (0.9765 mm)

or (1.953 mm). These calculated distance-between-borders are considered acceptable

for clinical practice as it is presented in [275, 5]. The chapter also presented exten-

sive discussion on the possible sources that may cause any inaccuracy on the final

outcomes. As a conclusion of this chapter we will raise two questions: (a) If we print

this mask will it fit the patient? The answer based on the presented work is ‘very

probably’. If it didn’t then some very minor changes to the algorithm would fix the

problem. (b) Would the printed mask provide better immobilisation than the existing

shell? This is a more difficult question and we think we would need to do further

clinical trials with patients ‘wearing’ printed masks.



Chapter 10

Conclusions

10.1 Conclusions

This thesis presented an automatic pipeline which aims to evaluate the accuracy of

the CT-derived models which are built using different segmentation techniques. The

outcome of this pipeline can be employed to construct immobilisation masks for Head-

and-Neck cancer patients to be used in their radiotherapy treatment. The phases of

the presented pipeline have been examined separately and then as a unit. A clinical

trial has been conducted to allow the presented pipeline to be quantitatively evalu-

ated. The results show that the presented pipeline is clinically viable. However, we

conclude and summarise the work in this thesis by presenting the main outcomes and

contributions.

Removing image artefacts due to fixations in CT images

We presented in this thesis a fast and automatic approach to remove image arte-

facts due to fixations in CT images. Our approach uses a fractional order Darwinian

particle swarm optimisation of Otsu’s method combined with morphological post-

processing to classify pixels belonging to the mask. We applied our approach over

five different CT data sets comprising a total of 738 image slices. The evaluation

156
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indicates that the proposed approach is robust and of practical use. Some enhance-

ments to speed up the process using PSO were also presented and tested in the thesis.

The presented approach achieved an average specificity of 92.01% and sensitivity of

99.39%.

Image segmentation

We applied five segmentation techniques in this thesis to segment the head from CT

images. The five techniques are: Otsu, K-means, EM, DRLSE, and HMRF-EM. We

found,when we evaluated their accuracy, that DRLSE is the most accurate one and

this is expected as the level set methods have been successfully employed in the field

of active contour models. In this context, we presented a procedure to set the level

set binary function in order to segment CT images, and developed an algorithm to

handle the case when more than one contour is found. The accuracy of segmentation,

for the five techniques, were analysed slice by slice and the stability of results were

addressed. We found that the DRLSE achieved 96.56% as a similarity ratio with a

standard deviation equals 0.00796. All the generated figures encouraged us to employ

the DRLSE in our pipeline.

Automatic 3D Alignment

As one of the main parts of the evaluation process in this thesis is to compare be-

tween the laser-scan model as a ground-truth and the CT-derived model, a precise

alignment between the two models is necessary. We presented a customised version

of the ICP algorithm which shows better results than the conventional ICP algorithm

in terms of speed, accuracy and convergence. We have applied our experiments to

compare between the conventional ICP algorithm and our customised version of the

ICP over three objects. In terms of execution time, the conventional ICP needed to

align the three objects (61.80, 263.26, 423.45) seconds whereas the customised version

needed (3.28, 26.96, 9.10) seconds respectively. In terms of the accuracy, the average
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distances between the aligned models achieved by the conventional ICP are (2.8651,

3.5256, 0.7346)mm whereas the distances for the customised ICP are (0.60392, 0.6192,

0.47472)mm. The results show that the average distances between the two models,

after applying the our customised version of the ICP algorithm, were smaller than

the CT pixel-spacing value which ensures the reliability of the presented algorithm.

Overlap measurement for medical volumes

An overlap measurement specifically designed to measure the ratio of overlap between

two medical volumes is presented. The presented measurement generates figures rep-

resenting the similarities along the axial, sagittal and coronal planes. Two strategies

were used to test the proposed measurement. We examined the correlation between

the proposed measurement and other widely used and accepted measurements. In

addition to that, we examined methodically our outcomes for particular test cases in

which we know in advance how the correct outputs should be. The average value of

correlation between our overlap measurement and the RMSE is -0.7559 over our data

sets and the average value that we got for the pvalue is 0.0018 which indicates that

there are a very low probability of observing the null hypothesis. The extensive anal-

ysis of this measurement showed that this measurement is convenient to be used for

medical volumes and to evaluate the outcomes of the segmentation and registration

processes.

Automatic evaluation of segmentation techniques

We presented in this thesis an automatic pipeline to be used to evaluate and compare

the accuracies of different segmentation techniques. This pipeline supposes that we

have a 3D model (e.g. laser-scan model) employed as a ground-truth. The experi-

ments have been applied over homogeneous 3D printed objects of different shapes.

The average similarity values that we got for the three objects are (96.96%, 99.40%,

98.61%). These outcomes indicate that the presented pipeline is reliable and can be
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used to quantify the accuracy of segmentation of medical images.

Automatic approach to construct immobilisation masks

This thesis presented an automatic approach to construct immobilisation masks for

use in radiotherapy treatment of HNC patients. The chapters of this thesis displayed

in sequence all the required phases of this approach and examined the outcome of

each phase separately. The whole approach was examined by conducting a clinical

trial at the Norfolk and Norwich University Hospital. We found when we investi-

gated the absolute measurements of the space between the surface of the CT-derived

model and the external surface of the ground-truth that about 87% of points have

distance-between-borders equals either (0.9765 mm) or (1.953 mm) which represent

the thickness of the scanned mask. This makes the proposed approach of treatment

which is presented in this thesis a promising alternative to the current immobilisation

masks used nowadays in hospitals.

10.2 Future Work

We have identified in this research two main points which we think are needed to be

further investigated:

• Conducting a feasibility study in order to evaluate whether manufacturing im-

mobilisation masks from an economic and operational standpoint is affordable

and applicable. This requires us to communicate with companies in industry

sector to show them our work and outcomes.

• Getting more patient specific data from our clinical trial by performing laser

scanning for a cohort of patients and evaluating the outcomes. These outcomes

will supply us with more comprehensive vision on the accuracy of the process

when considering real human skin.
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• Doing more enhancement over our customised version of the iterative closest

point algorithm. This enhancement includes the employing of the FODPSO

and other optimisation techniques to speed up the matching of corresponding

points between two datasets.

• Testing our customised version of the ICP algorithm over different forms of

meshes and generalise the presented approach to be of practical use not only in

medical applications but in computer graphics applications in general.

• Evaluating the performance of the presented 3D overlap measurement over a

benchmark dataset.

• Using the convolutional neural network and deep learning techniques to segment

the skin/air boundary in humans.

• Publishing the novel pipeline that is presented in this thesis which performs an

automatic evaluation of the accuracy of segmentation as well as the novel 3D

overlap measurement.
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Ferreira. An efficient method for segmentation of images based on fractional

calculus and natural selection. Expert Systems with Applications, 39(16):12407–

12417, 2012.

[116] Erik Cuevas, Daniel Zaldivar, and Marco Pérez-Cisneros. A novel multi-
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Appendix A

Applying our Overlap
Measurement in Related
Applications of Surface
Simplification

This appendix presents the experimental work in which we employed our overlap

measurement (Dice 3S) in two different applications which are related to the quality

of surface simplification of volume images. The ‘Pelvis’ and the ‘Knee’ data sets are

used here to evaluate the experimental work.

A.1 Introduction

Transmitting and displaying of medical volume images are two of the most technical

difficulties in medical fields [276]. Reducing the size of medical volume images is one

of the possible approaches to deal with those difficulties. The aim of reducing the

size (surface simplification) is to produce high quality approximations of the original

surface but in smaller size. Size reduction of medical volume images can have a

significant impact on processing speed especially on low-end workstations [277] and

it is considered an essential process when the computing resources (i.e. CPU, RAM,

graphics card) is a matter. In addition to that, size reduction is used to export

3D medical image volumes for the production of physical biomodels [277]. There are

different techniques used for reducing the size of volume images (down-sampling). 3D

196
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overlap measurements are used as a measure to evaluate the validity of the techniques

which are used for reducing the size of volume images.

The experiments in this appendix are designed to illustrate how Dice 3S can

be employed in useful applications for surface simplification in the field of medical

images. We present two applications in this part:

• In the first application, we utilised Dice 3S to compare between the Quadric

Edge Collapse Decimation (QECD) technique [278] [279] and the Uniform Mesh

Resampling (UMR) technique to determine which technique produces a higher

level of similarity using different reduced versions of medical images. For each

data set, 10 reduced versions of different sizes were generated using the QECD

technique and another 10 reduced versions were generated using the UMR tech-

nique. The overlap measurement was run over each corresponding versions to

find the technique that gives a higher level of similarity. Notice that UMR tech-

nique creates a new mesh that is a resampled version of the original one. The

proportion of resampling depends on value of precision which is selected by the

user.

• In the second application, we utilised Dice 3S to be used to choose the opti-

mal correction value (offsetting value) when a Poisson Surface Reconstruction

(PSR) technique [280] is used. For each data set, a comparison between sur-

faces generated by 9 offsets was performed in order to find the optimal surface

position.

A.2 Comparing Two Surface-Simplification Tech-

niques

Table A.1 displays the average similarity value generated by Dice 3S when applied

over the Pelvis and the Knee data sets using the QECD technique for surface sim-

plification. The experiments are run over 11 resized versions of the same object (i.e

each row represents one case). Each case of those represent a different percentage of

reduction of the initial size.
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Table A.1: Testing Dice 3S on different reduced (simplified) versions of the pelvis
and knee data sets. The QECD technique was used here to reduce the size of objects

Row# Percentage File-Size Vertices faces Average Overlap
With-filling No-filling

Pelvis
1 Same 750 7,625 15,350 1.0000 1.0000
2 90% 675 6,854 13,814 0.9969 0.9785
3 80% 600 6,090 12,279 0.9908 0.9385
4 70% 525 5,323 10,744 0.9760 0.8591
5 60% 450 4,556 9,210 0.9613 0.7742
6 50% 375 3,793 7,674 0.9383 0.6801
7 40% 300 3,030 6,140 0.9231 0.6045
8 30% 225 2,268 4,604 0.9145 0.5569
9 20% 150 1,505 3,070 0.9013 0.4940
10 10% 75 742 1,534 0.8732 0.4119
11 1% 8 70 152 0.6089 0.1501

Knee
12 Same 2,665 26,651 53,314 1.0000 1.0000
13 90% 2,343 23,985 47,982 0.9984 0.9535
14 80% 2,132 21,319 42,650 0.9965 0.8995
15 70% 1,823 18,653 37,318 0.9949 0.8475
16 60% 1,562 15,988 31,988 0.9921 0.7970
17 50% 1,332 13,322 26,656 0.9907 0.7535
18 40% 1,042 10,656 21,324 0.9886 0.7117
19 30% 782 7,991 15,994 0.9861 0.6755
20 20% 521 5,325 10,662 0.9841 0.6429
21 10% 261 2,659 5,330 0.9813 0.6099
22 1% 27 261 532 0.9511 0.2933

Table A.2 displays the average similarity value generated by Dice 3S when applied

over the Pelvis and the Knee data sets using the UMR technique for surface simpli-

fication. The experiments are run over different resized versions (approximations) of

the same object (i.e each row represents one case). Each case of those represent a

different precision value. The resampling in UMR is performed by building a uniform

volumetric representation where each voxel contains the signed distance from the

original surface. The precision in this context refer to size of the cell where smaller

cells produces better precision.

Figure A.1 illustrates and compares, as bar charts, the quality of the simplification

between the QECD and the UMR techniques. It is obvious from the bar charts

that the QECD technique produces a higher level of similarity ratio than the UMR

technique for the same file size (i.e. the same percentage of approximation) which

agrees with the results introduced in [278]. This applies for all the different test cases

(i.e. all the file sizes) which leads to a conclusion that the QECD is more convenient

than the UMR for approximation of volume medical images. The same test can be
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Table A.2: Testing the overlap measurement on different reduced versions of the
pelvis and knee data sets. The UMR technique was used here to reduce the size of
objects

Row# Precision File-Size Vertices faces Average Overlap
With-filling No-filling

Pelvis
1 Same 750 7,625 15,350 1.0000 1.0000
2 1.5 747 7617 15280 0.8858 0.4236
3 2.0 403 4124 8247 0.8558 0.3500
4 2.5 241 2441 4928 0.8247 0.3167
5 3.0 165 1668 3358 0.7817 0.2579
6 3.5 111 1135 2270 0.7461 0.2318
7 4.0 81 824 1652 0.7108 0.2018
8 4.5 63 654 1284 0.6568 0.1739
9 5.0 46 487 934 0.6181 0.1375
10 5.5 34 367 694 0.5357 0.1058
11 6.0 28 294 560 0.5348 0.1064
12 6.5 24 248 472 0.4507 0.0813
13 7.0 18 197 362 0.4414 0.0811
14 7.5 18 191 366 0.4712 0.0851
15 10 7 82 140 0.2211 0.0357

Knee
16 Same 2,665 26,651 53,314 1.0000 1.0000
17 1.5 605 6182 12384 0.9765 0.5174
18 2.0 324 3308 6624 0.9670 0.4278
19 2.5 207 2112 4228 0.9574 0.3487
20 3.0 139 1407 2830 0.9391 0.2703
21 3.5 100 1015 2034 0.9230 0.2055
22 4.0 75 757 1522 0.9110 0.1747
23 4.5 61 623 1238 0.8952 0.1558
24 5.0 43 438 876 0.8637 0.1011
25 5.5 37 378 756 0.8578 0.0920
26 6.0 33 332 668 0.8504 0.0911
27 6.5 23 234 464 0.8206 0.0527

used to compare between any size-reduction techniques to see which one gives a higher

similarity ratio. The figures also support what we stated before, in Chapter 7 Section

7.6, on the stability of results generated by the overlap measurement either if we use

or not the image filling. Moreover, the relation between the file size and the similarity

ration for the QECD is more linear than the UMR technique which is a good feature

and makes the outcomes of this technique more reasonable.

A.3 Determining the Optimal Correction Value in

Poisson Surface Reconstruction Technique

We have utilised Dice 3S to choose the optimal correction value (i.e. surface offsetting

value or α) for the isosurface threshold when Poisson surface reconstruction (PSR)
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(a)Pelvis dataset/with filling (b)Knee dataset/with filling

(c)Pelvis dataset/no filling (d)Knee dataset/no filling

Figure A.1: Comparison between the QECD and the UMR techniques. Interpolation
has been used to find the interpolated values at specific file sizes for the UMR

technique is used. Table A.3 displays the average similarity ratio for the pelvis and

the knee data sets using different values for the parameter α when PSR technique is

applied to reduce the size of the mesh.

Figure A.2 plots the average similarity ratio for different values of α when the

PSR technique is used. The red ellipses in the figure represent the point at which

the parameter α reaches the maximum value of similarity ratio. It is obvious from

the figures that choosing a value for α to be in the range [0.90 - 1.0] will be the best

choice to have the optimal similarity ratio.
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Table A.3: The average similarity ratio for the pelvis and the knee data sets using
different values for the parameter α.

Row# (α) File-Size Vertices faces Average Overlap
With-filling No-filling

Pelvis
1 Same 750 7,625 15,350 1.0000 1.0000
2 0.25 840 8592 17192 0.5731 0.0129
3 0.50 781 7986 15980 0.7421 0.1035
4 0.75 712 7278 14568 0.8320 0.2535
5 0.875 680 6944 13908 0.8400 0.2935
6 1.0 638 6526 13052 0.8408 0.3090
7 1.25 562 5752 11492 0.7506 0.2286
8 1.5 459 4706 9384 0.6029 0.1021
9 1.75 325 3366 6652 0.4143 0.0293
10 2.0 194 1994 3968 0.2293 0.0053

Knee
12 Same 2,665 26,651 53,314 1.0000 1.0000
13 0.25 456 4664 9324 0.7478 0.0001
14 0.50 442 4518 9032 0.8318 0.0024
15 0.75 429 4392 8784 0.9069 0.0811
16 0.875 427 4362 8724 0.9324 0.1797
17 1.00 426 4356 8712 0.9424 0.2628
18 1.25 415 4240 8480 0.8892 0.0750
19 1.50 386 3946 7888 0.7943 0.0066
20 1.75 341 3485 6970 0.6570 0.0011
21 2.00 235 2401 4794 0.4516 0.0001
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(a)Pelvis dataset/with filling (b)Knee dataset/with filling

(c)Pelvis dataset/no filling (d)Knee dataset/no filling

Figure A.2: Average similarity ratio for different Offsetting values. The red ellipses in
the figure represent the point at which the parameter α reaches the maximum value
of similarity ratio.



Appendix B

Related Documents of the Clinical
Trial

The following documents, which are related to our clinical trial, are attached to this

appendix. This clinical trial is registered under the permission and approvals of the

(Health Research Authority, NHS, UK) and the (Research Ethics Committee (REC),

Yorkshire & The Humber, UK) and sponsored by the University of East Anglia, UK. It

was given the following ID under the Integrated Research Application System (IRAS

project ID:209119) and the following reference under the Research Ethics Committee

(REC reference:16/YH/0485). Our clinical trial is posted online (see [263, 264, 265]).

• HRA approval (Health Research Authority approval)

• REC approval (Research Ethics Committee approval)

• Clinical trial protocol

• Participant information sheet (PIS)

• Consent form

• Good clinical practice certificate

• Letter of access for research
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HRA Approval 
(Health Research Authority Approval) 



 
 

Page 1 of 8 

Mr Mohammad Ryalat 

University of East Anglia 

School of Computing Sciences 

UEA, Norwich. 

NR4 7TJ 

 
Email: hra.approval@nhs.net 

 

23 January 2017 

 

Dear Mr Ryalat    

 

 

Study title: Feasibility Study: Acquisition of 3D facial geometry of 

patients' scheduled for head and neck Radiotherapy 

Treatment (RT). 

IRAS project ID: 209119  

REC reference: 16/YH/0485   

Sponsor University of East Anglia 

 

I am pleased to confirm that HRA Approval has been given for the above referenced study, on the 

basis described in the application form, protocol, supporting documentation and any clarifications 

noted in this letter.  

 

Participation of NHS Organisations in England  

The sponsor should now provide a copy of this letter to all participating NHS organisations in England.  

 

Appendix B provides important information for sponsors and participating NHS organisations in 

England for arranging and confirming capacity and capability. Please read Appendix B carefully, in 

particular the following sections: 

 Participating NHS organisations in England – this clarifies the types of participating 

organisations in the study and whether or not all organisations will be undertaking the same 

activities 

 Confirmation of capacity and capability - this confirms whether or not each type of participating 

NHS organisation in England is expected to give formal confirmation of capacity and capability. 

Where formal confirmation is not expected, the section also provides details on the time limit 

given to participating organisations to opt out of the study, or request additional time, before 

their participation is assumed. 

 Allocation of responsibilities and rights are agreed and documented (4.1 of HRA assessment 

criteria) - this provides detail on the form of agreement to be used in the study to confirm 

capacity and capability, where applicable. 

Further information on funding, HR processes, and compliance with HRA criteria and standards is also 

provided. 

 

Letter of HRA Approval 
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It is critical that you involve both the research management function (e.g. R&D office) supporting each 

organisation and the local research team (where there is one) in setting up your study. Contact details 

and further information about working with the research management function for each organisation 

can be accessed from www.hra.nhs.uk/hra-approval.  

 

Appendices 

The HRA Approval letter contains the following appendices: 

 A – List of documents reviewed during HRA assessment 

 B – Summary of HRA assessment 

 

After HRA Approval 

The document “After Ethical Review – guidance for sponsors and investigators”, issued with your REC 

favourable opinion, gives detailed guidance on reporting expectations for studies, including:  

 Registration of research 

 Notifying amendments 

 Notifying the end of the study 

The HRA website also provides guidance on these topics, and is updated in the light of changes in 

reporting expectations or procedures. 

 

In addition to the guidance in the above, please note the following: 

 HRA Approval applies for the duration of your REC favourable opinion, unless otherwise 

notified in writing by the HRA. 

 Substantial amendments should be submitted directly to the Research Ethics Committee, as 

detailed in the After Ethical Review document. Non-substantial amendments should be 

submitted for review by the HRA using the form provided on the HRA website, and emailed to 

hra.amendments@nhs.net.  

 The HRA will categorise amendments (substantial and non-substantial) and issue confirmation 

of continued HRA Approval. Further details can be found on the HRA website. 

 

Scope  

HRA Approval provides an approval for research involving patients or staff in NHS organisations in 

England.  

 

If your study involves NHS organisations in other countries in the UK, please contact the relevant 

national coordinating functions for support and advice. Further information can be found at 

http://www.hra.nhs.uk/resources/applying-for-reviews/nhs-hsc-rd-review/. 

  

If there are participating non-NHS organisations, local agreement should be obtained in accordance 

with the procedures of the local participating non-NHS organisation. 

 

User Feedback 

The Health Research Authority is continually striving to provide a high quality service to all applicants 

and sponsors. You are invited to give your view of the service you have received and the application 

http://www.hra.nhs.uk/hra-approval
http://www.hra.nhs.uk/documents/2014/11/notification-non-substantialminor-amendmentss-nhs-studies.docx
mailto:hra.amendments@nhs.net
http://www.hra.nhs.uk/resources/hra-approval-applicant-guidance/during-your-study-with-hra-approval/
http://www.hra.nhs.uk/resources/applying-for-reviews/nhs-hsc-rd-review/
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procedure. If you wish to make your views known please email the HRA at hra.approval@nhs.net. 

Additionally, one of our staff would be happy to call and discuss your experience of HRA Approval.  

 

HRA Training 

We are pleased to welcome researchers and research management staff at our training days – see 

details at http://www.hra.nhs.uk/hra-training/  

 

Your IRAS project ID is 209119. Please quote this on all correspondence. 

 

Yours sincerely 

 

Beverley Mashegede 

Assessor 

 

Email: hra.approval@nhs.net  

 

 

 

Copy to: Ms Tracy Moulton, Sponsor Contact 

 

Mr Michael Sheridan, Lead NHS R&D Contact 

 

Dr Mark Fisher, Chief Investigator, Supervisor 

 

   

   

   

 

  

mailto:hra.approval@nhs.net
http://www.hra.nhs.uk/hra-training/
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Appendix A - List of Documents 

 

The final document set assessed and approved by HRA Approval is listed below.   

 

 Document   Version   Date   

Covering letter on headed paper [Covering letter]  1.0  02 November 2016  

IRAS Application Form [IRAS_Form_09122016]    09 December 2016  

IRAS Application Form XML file [IRAS_Form_09122016]    09 December 2016  

IRAS Checklist XML [Checklist_09122016]    09 December 2016  

Letter from sponsor [Sponsor &amp; Indemnity Letter]  1.0  03 November 2016  

Non-validated questionnaire [Questionnaire]  2.0  02 November 2016  

Other [List of Amendments]  1.0  17 November 2016  

Other [IRAS Trial Form: Amendments]  1.0  09 December 2016  

Participant consent form [Consent Form]  3.0  10 November 2016  

Participant information sheet (PIS) [Participant Information Sheet]  3.0  17 November 2016  

Research protocol or project proposal [Research Protocol]  3.0  10 November 2016  

Summary CV for Chief Investigator (CI) [CV: Dr Mark Fisher]  1.0  02 November 2016  

Summary CV for student [CV: Mohammad Ryalat]  1.0  02 November 2016  

Summary CV for supervisor (student research) [CV: Dr Mark Fisher]  1.0  02 November 2016  

Summary, synopsis or diagram (flowchart) of protocol in non-
technical language [Flowchart]  

1.0  02 November 2016  
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Appendix B - Summary of HRA Assessment 

 

This appendix provides assurance to you, the sponsor and the NHS in England that the study, as 

reviewed for HRA Approval, is compliant with relevant standards. It also provides information and 

clarification, where appropriate, to participating NHS organisations in England to assist in assessing 

and arranging capacity and capability. 

For information on how the sponsor should be working with participating NHS organisations in 

England, please refer to the, participating NHS organisations, capacity and capability and 

Allocation of responsibilities and rights are agreed and documented (4.1 of HRA assessment 

criteria) sections in this appendix.  

The following person is the sponsor contact for the purpose of addressing participating organisation 

questions relating to the study: 

 

Name: Tracy Moulton 

Tel: 01603 591482 

Email: t.moulton@uea.ac.uk 

 

HRA assessment criteria  

Section HRA Assessment Criteria Compliant with 

Standards 

Comments 

1.1 IRAS application completed 

correctly 

Yes No comments  

    

2.1 Participant information/consent 

documents and consent 

process 

Yes No comments 

    

3.1 Protocol assessment Yes No comments 

    

4.1 Allocation of responsibilities 

and rights are agreed and 

documented  

Yes The Sponsor contact confirmed that no 

Statement of Activities is expected as a 

form of agreement as UEA and NNUH 

have a joint working relationship with 

Joint SOPs. 

4.2 Insurance/indemnity 

arrangements assessed 

Yes Where applicable, independent 

contractors (e.g. General Practitioners) 

should ensure that the professional 

indemnity provided by their medical 

defence organisation covers the 

activities expected of them for this 

mailto:t.moulton@uea.ac.uk
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Section HRA Assessment Criteria Compliant with 

Standards 

Comments 

research study. 

4.3 Financial arrangements 

assessed  

Yes No funds will be provided to the 

participating organisation. 

    

5.1 Compliance with the Data 

Protection Act and data 

security issues assessed 

Yes No comments 

5.2 CTIMPS – Arrangements for 

compliance with the Clinical 

Trials Regulations assessed 

Not Applicable No comments 

5.3 Compliance with any 

applicable laws or regulations 

Yes No comments 

    

6.1 NHS Research Ethics 

Committee favourable opinion 

received for applicable studies 

Yes 

 

Provisional Opinion was issued 14 

November 2016. Further Information 

FO issued 12 December 2016. 

6.2 CTIMPS – Clinical Trials 

Authorisation (CTA) letter 

received 

Not Applicable No comments 

6.3 Devices – MHRA notice of no 

objection received 

Not Applicable No comments 

6.4 Other regulatory approvals 

and authorisations received 

Not Applicable No comments 
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Participating NHS Organisations in England 

This provides detail on the types of participating NHS organisations in the study and a statement as to whether 

the activities at all organisations are the same or different.  

This is a non-commercial student (PhD Computing Sciences) and there is one site type. 

 

The Chief Investigator or sponsor should share relevant study documents with participating NHS 

organisations in England in order to put arrangements in place to deliver the study. The documents 

should be sent to both the local study team, where applicable, and the office providing the research 

management function at the participating organisation. For NIHR CRN Portfolio studies, the Local 

LCRN contact should also be copied into this correspondence.  For further guidance on working with 

participating NHS organisations please see the HRA website. 

 

If chief investigators, sponsors or principal investigators are asked to complete site level forms for 

participating NHS organisations in England which are not provided in IRAS or on the HRA website, 

the chief investigator, sponsor or principal investigator should notify the HRA immediately at 

hra.approval@nhs.net. The HRA will work with these organisations to achieve a consistent approach 

to information provision.  

 

Confirmation of Capacity and Capability  

This describes whether formal confirmation of capacity and capability is expected from participating NHS 

organisations in England. 

Participating NHS organisations in England will be expected to formally confirm their capacity 

and capability to host this research.  

 Following issue of this letter, participating NHS organisations in England may now confirm to 

the sponsor their capacity and capability to host this research, when ready to do so. How 

capacity and capacity will be confirmed is detailed in the Allocation of responsibilities and 

rights are agreed and documented (4.1 of HRA assessment criteria) section of this appendix.  

 The Assessing, Arranging, and Confirming document on the HRA website provides further 

information for the sponsor and NHS organisations on assessing, arranging and confirming 

capacity and capability. 

 

 

Principal Investigator Suitability 

This confirms whether the sponsor position on whether a PI, LC or neither should be in place is correct for each 

type of participating NHS organisation in England and the minimum expectations for education, training and 

experience that PIs should meet (where applicable). 

A Principal Investigator is expected at the participating organisation. 

 

GCP training is not a generic training expectation, in line with the HRA statement on training 

expectations. 

 

 

 

mailto:hra.approvalprogramme@nhs.net
http://www.hra.nhs.uk/documents/2015/11/assess-arrange-confirm-clarifications-hra-terminology.pdf
http://www.hra.nhs.uk/resources/before-you-apply/roles-and-responsibilties/researcher-suitability-and-training/
http://www.hra.nhs.uk/resources/before-you-apply/roles-and-responsibilties/researcher-suitability-and-training/
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HR Good Practice Resource Pack Expectations 

This confirms the HR Good Practice Resource Pack expectations for the study and the pre-engagement checks 

that should and should not be undertaken 

A Letter of Access or honorary contract is expected for external research team members undertaking 

any research activities that may impact on the quality of care of the participant.  

 

Students supervised under close clinical supervision may not require honorary research contracts. 

 

Other Information to Aid Study Set-up  

This details any other information that may be helpful to sponsors and participating NHS organisations in 

England to aid study set-up. 

The applicant has indicated that they do not intend to apply for inclusion on the NIHR CRN Portfolio. 

 

 

 

 



 

 

 

 

 
 

REC Approval 
(Research Ethics Committee Approval) 



 
Yorkshire & The Humber - Leeds East Research Ethics Committee 

Jarrow Business Centre 
Rolling Mill Road 

Jarrow 
NE32 3DT 

 
Telephone: 0207 104 8081  

03 November 2016 
 
Mr Mohammad Ryalat 
NR4 7TJ 
University of East Anglia 
School of Computing Sciences 
UEA, Norwich. 
NR4 7TJ 
 
 
Dear Mr Ryalat 
 
Study title: Feasibility Study: Acquisition of 3D facial geometry of 

patients' scheduled for head and neck Radiotherapy 
Treatment (RT). 

REC reference: 16/YH/0485 
IRAS project ID: 209119 
 
Thank you for your application for ethical review, which was received on 3rd November.  I 
can confirm that the application is valid and will be reviewed by the Proportionate Review 
Sub-Committee on 14 November 2016.  To enable the Proportionate Review Sub 
Committee to provide you with a final opinion within 10 working days your application 
documentation will be sent by email to Committee members. 
 
One of the REC members is appointed as the lead reviewer for each application reviewed 
by the Sub-Committee.  I will let you know the name of the lead reviewer for your 
application as soon as this is known.  
 
Please note that the lead reviewer may wish to contact you by phone or email between 11th 
and 18th November to clarify any points that might be raised by members and assist the 
Sub-Committee in reaching a decision. 
 
If you will not be available between these dates, you are welcome to nominate another key 
investigator or a representative of the study sponsor who would be able to respond to the 
lead reviewer’s queries on your behalf.  If this is your preferred option, please identify this 
person to us and ensure we have their contact details. 
 
You are not required to attend a meeting of the Proportionate Review Sub-Committee. 
 
Please do not send any further documentation or revised documentation prior to the review 
unless requested. 
 
Documents received 
 
The documents to be reviewed are as follows: 
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Document   Version   Date   

Covering letter on headed paper [Covering letter]  1.0  02 November 2016  

IRAS Application Form [IRAS_Form_03112016]    03 November 2016  

IRAS Application Form XML file [IRAS_Form_03112016]    03 November 2016  

IRAS Checklist XML [Checklist_03112016]    03 November 2016  

Letter from sponsor [Sponsor &amp; Indemnity Letter]  1.0  03 November 2016  

Non-validated questionnaire [Questionnaire]  2.0  02 November 2016  

Participant consent form [Consent Form]  2.0  03 November 2016  

Participant information sheet (PIS) [Participant Information Sheet]  2.0  02 November 2016  

Research protocol or project proposal [Research Protocol]  2.0  03 November 2016  

Summary CV for Chief Investigator (CI) [CV: Dr Mark Fisher]  1.0  02 November 2016  

Summary CV for student [CV: Mohammad Ryalat]  1.0  02 November 2016  

Summary CV for supervisor (student research) [CV: Dr Mark Fisher]  1.0  02 November 2016  

Summary, synopsis or diagram (flowchart) of protocol in non 
technical language [Flowchart]  

1.0  02 November 2016  

 

 
No changes may be made to the application before the meeting. If you envisage that 
changes might be required, you are advised to withdraw the application and re-submit it. 
 
Notification of the Sub-Committee’s decision 
 
We aim to notify the outcome of the Sub-Committee review to you in writing within 10 
working days from the date of receipt of a valid application. 
 
If the Sub-Committee is unable to give an opinion because the application raises material 
ethical issues requiring further discussion at a full meeting of a Research Ethics Committee, 
your application will be referred for review to the next available  meeting.  We will contact 
you to explain the arrangements for further review and check they are convenient for you.  
You will be notified of the final decision within 60 days of the date on which we originally 
received your application.  If the first available meeting date offered to you is not suitable, 
you may request review by another REC.  In this case the 60 day clock would be stopped 
and restarted from the closing date for applications submitted to that REC. 
 
Setting up sites in the NHS 
 
All researchers and local research collaborators who intend to participate in this study at 
sites in the National Health Service (NHS) or Health and Social Care (HSC) in Northern 
Ireland should work with the relevant care organisation to ensure management permission 
is confirmed before the study begins. Guidance on how to work with sites is provided in the 
IRAS help section at https://www.myresearchproject.org.uk/help/hlpnhshscr.aspx 
 
Final management permission will not be confirmed until after a favourable opinion has 
been given by this Committee, and all other relevant approvals for the research to begin are 
in place. Please contact the NHS R&D office at the lead site in the first instance for further 
guidance. 
 
Communication with other bodies 
 
All correspondence from the REC about the application will be copied to the research 
sponsor and to the R&D office for Norfolk and Norwich University Hospitals NHS 
Foundation Trust. It will be your responsibility to ensure that other investigators, research 

https://www.myresearchproject.org.uk/help/hlpnhshscr.aspx
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collaborators and NHS care organisation(s) involved in the study are kept informed of the 
progress of the review, as necessary. 
 
HRA Training 
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Feasibility Study: Acquisition of 3D facial geometry of patients' 
scheduled for head and neck Radiotherapy Treatment (RT). 
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Acquisition of 3D facial geometry of patients' scheduled for RT  
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Investigator agrees to conduct the study in compliance with the approved protocol and will adhere to 
the principles outlined in the Declaration of Helsinki, the Sponsor’s SOPs, and other regulatory 
requirement. 

I agree to ensure that the confidential information contained in this document will not be used for any 
other purpose other than the evaluation or conduct of the investigation without the prior written 
consent of the Sponsor 

I also confirm that I will make the findings of the study publically available through publication or other 
dissemination tools without any unnecessary delay and that an honest accurate and transparent 
account of the study will be given; and that any discrepancies from the study as planned in this 
protocol will be explained. 
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...................................................................................................... 
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.............................................................................. 
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STUDY SUMMARY 

Immobilisation for patients undergoing brain or head and neck radiotherapy is achieved using perspex 
or thermoplastic devices that require direct moulding to patient anatomy. The mould room visit can be 
distressing for patients and the shells do not always fit perfectly. In addition the mould room process 
can be time consuming. With recent developments in 3D printing technologies comes the potential to 
generate a treatment shell directly from a computer model of a patient. Typically, a patient requiring 
radiotherapy treatment will have had a CT scan and if a computer model of a shell could be obtained 
directly from the CT data it would reduce patient distress, reduce visits, obtain a close fitting shell and 
possibly enable the patient to start their radiotherapy treatment more quickly. However, extracting 
such a surface remains a challenge and is currently the focus of a PhD research project in the School 
of Computing Sciences, UEA that aims to develop software capable of creating physical models of 
treatment shells directly from CT scans. This study will provide patient specific data that will in turn 
enable algorithms developed as part of the PhD to be quantitatively evaluated and compared, thus 
allowing us determine if the approach is clinically viable.  
 

Study Title Feasibility Study: Acquisition of 3D facial geometry of 
patients' scheduled for head and neck Radiotherapy 
Treatment (RT). 

Internal ref. no. (or short title) Acquisition of 3D facial geometry of patients' scheduled for 
RT  

Study Design  

Study Participants Adults (age 18-69 inclusive). Patients undergoing 
radiotherapy treatment for tumours affecting their head and 
neck. 

Planned Size of Sample (if applicable) 12 

Follow up duration (if applicable) N/A 

Planned Study Period 01.12.2016 – 31.01.2017 

Research Question/Aim(s) 

 

Can an automatic system generate 3-D printed immobilisation 
masks having performance comparable to existing head and 
neck immobilisation systems from a CT scan? 

How do 3-D facial models built from CT and laser-scanner 
data sets compare in terms of accuracy and precision? 
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Fees) 
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Funder(s) University of East Anglia - Support in Kind 

University Campus Suffolk - Support in Kind 

Norfolk & Norwich University Hospital NHS Trust - Support in 
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Key Protocol Contributors Sarah Barber, Trials and Research Radiographer, Norfolk & 
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NR4 7UY. 

Email: sarah.barber@nnuh.nhs.uk 
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Email: michael.sheridan@nnuh.nhs.uk 
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ROLE OF STUDY SPONSOR AND FUNDER 

The clinical trial is the next step in a programme of research investigating the use of 3D printing of 
patient immobilisation masks and it is a key component of a research project carried out by Mr 
Mohammad Ryalat, a PhD student at UEA. UEA are the sponsor.  The PhD is supervised by Dr Mark 
Fisher (Co-supervisor Dr Stephen Laycock), in the School of Computing Sciences, UEA. 

Mohammad Ryalat is funded by Al-Balqa’ Applied University, 19117 Al-Salt, Jordan 

The project is part of an ongoing collaboration between the University of East Anglia, University 
Campus Suffolk, and Norfolk and Norwich University Hospital NHS Foundation Trust. The initial 
stages of the project attracted funding from BigC cancer charity (http://www.big-c.co.uk/), but this 
small clinical study has no direct funding, apart from the student’s bench fees.  

 

ROLES AND RESPONSIBILITIES OF STUDY MANAGEMENT COMMITEES/GROUPS & 
INDIVIDUALS 

Study Steering Groups 

As this represents a small pilot study, involving only 12 patients, there is no formal management 
group. 
 
Protocol contributors 

Aim: To describe all the contributors to the protocol.  

The protocol has been developed in consultation with clinical partners, principally: 

Sarah Barber, Trials and Research Radiographer, Norfolk & Norwich University Hospital NHS 
Foundation Trust, Colney Centre, East Block Level 1, Colney Lane, Norwich, Norfolk, NR4 7UY. 

Email: sarah.barber@nnuh.nhs.uk 

Michal Sheridan, Research Study & Recruitment Facilitator (General Surgery, Haematology, 
Oncology, Plastic Surgery & Urology], R&D office, Level 3 East Norfolk & Norwich University Hospitals 
NHS Foundation Trust Colney Lane, Norwich, NR4 7UY. 

Email: michael.sheridan@nnuh.nhs.uk 

Alison Vinall, Consultant Physicist, Head of Radiotherapy Physics, Norfolk and Norwich University 
Hospital NHS Trust. Colney Centre, East Block Level 1, Colney Lane, Norwich, Norfolk, NR4 7UY. 

Email: alison.vinall@nnuh.nhs.uk 

Mark Hulse, Senior Lecturer, Radiotherapy and Oncology, Faculty of Health Science, University 
Campus Suffolk, Ipswich. 

Email: m.hulse@UCS.AC.UK 

Tom Roques, Consultant Oncologist, Norfolk and Norwich University Hospital NHS Trust. 

Email: TOM.ROQUES@nnuh.nhs.uk 

The sponsor (UEA) will provide indemnity insurance. 

KEY WORDS: External Beam Radiotherapy; Patient Immobilisation; 
Head and Neck Cancer; 3D Printing 

 

sarah.barber@nnuh.nhs.uk
michael.sheridan@nnuh.nhs.uk
alison.vinall@nnuh.nhs.uk
m.hulse@UCS.AC.UK
TOM.ROQUES@nnuh.nhs.uk
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STUDY FLOW CHART 

Aim: To give readers a schematic overview of the study 
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STUDY PROTOCOL 

Feasibility Study: Acquisition of 3D facial geometry of patients' scheduled for head and neck 
Radiotherapy Treatment (RT). 

 

1 BACKGROUND 

Aim: To place the study in the context of available evidence. 

The background should be supported by appropriate references to published literature on the area of 
interest:- 

Accurately targeting radiation therapy treatment is critical to minimise side-effects and achieve a 
successful treatment outcome. Immobilisation of patients is essential when treating tumours located in 
the head and neck to ensure adequate target coverage and to minimise dose to organs at risk (OARs) 
most notably the eyes, spinal cord and brain stem. To ensure proper immobilisation and treatment 
reproducibility custom made thermoplastic face masks (beam directional shells) are usually used. 
These are tailor made for each patient by a specialist team of technicians in the Mould Room. 
Creating a plaster positive can be rather messy and some patients find it uncomfortable and 
distressing. An alternative approach that creates a thermo-plastic mesh shell directly can be equally 
unpleasant.  The long-term objective of the project is to use rapid prototyping technology to generate 
immobilisation shells non-invasively from 3D volumetric data acquired from the CT used for treatment 
planning. 

Patient immobilisation and the modelling of geometrical uncertainty are important topics that are 
generally well represented in the literature on radiotherapy physics. Research has shown that rigid 
immobilization could improve targeting in radiotherapy reducing the dose to normal tissue and 
potentially increasing the dose to the target [Verhey, 2006]. Verhey outlines the challenges of 
immobilizing patients with tumours in the head and neck due to the flexibility of the neck and the 
location of the tumour relative to organs at risk (OARs). A variety of immobilisation devices and 
techniques have been developed to minimise inter and intra fraction target registration error and beam 
directional shells (BDS) constructed from thermoplastic [Christiansen et al. 2012] are often employed. 
The processes involved in constructing these devices is a specialised task and can be distressing and 
inconvenient (e.g. requiring the removal of facial hair) for the patient.  

With modern manufacturing and rapid prototyping comes the possibility of determining the shape of 
the immobilisation device from the CT-scan of the patient directly, alleviating the need for making 
physical moulds from the patients’ head. Earlier work funded by a Big-C research grant demonstrated 
that masks to fit the contours of a Phantom [Hulse et al., 2012][Laycock et al., 2015][Fisher et al, 
2014] could be automatically generated. However, extracting the facial geometry from human subjects 
is more challenging as the facial tissue is heterogeneous and automatically determining the skin / air 
interface in CT is challenging. This trial provides data and a framework to evaluate computer 
algorithms designed to solve this problem, and to compare printed thermoplastic immobilisation 
solutions. 

 

2 RATIONALE  

Aim: To explain why the research questions/aim(s) being addressed are important and why closely 
related questions are not being covered.  

A previous study using a rando-phantom demonstrated the feasibility of printing immobilisation masks 
but was not able to determine if their performance was comparable to existing systems, because the 
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task of automatically locating the ‘skin’ / air boundary is trivial since the phantom is encapsulated in 
epoxy (i.e. homogeneous material). Facial skin is heterogeneous and it is far more challenging to build 
automatic systems that address this segmentation task. To develop and evaluate computer algorithms 
that are able to accurately reconstruct a model of the skin surface from CT imagery we need both CT 
data and a ground truth model of the patient’s facial features. A laser scanner is widely accepted as 
the most accurate method of obtaining ground truth. A trail involving a small number of patients is 
need to provide data to evaluate our algorithms and measure errors between surface models 
reconstructed from CT and those reconstructed from laser scan data.  

 

3 THEORETICAL FRAMEWORK 

Aim: To describe the theoretical framework for the study. 

We plan to repeat the study reported by [Fisher et al, 2014] but using human subjects rather than a 

rando-phantom. Standard metrics will be used to comparing the two surface models derived from CT 

and laser scan data, e.g. [Crum et al. 2006]. 

 

4 RESEARCH QUESTION/AIM(S) 

Aim: To define the primary research question/aim(s) 

 
4.1 Objectives 
 
Aim: To clearly define the study’s objectives (there may be more than one). 

1. To determine if a computer vision system can automatically generate 3-D printed 
immobilisation masks having performance comparable to existing head and neck 
immobilisation systems from a CT scan? 
 

2. To compare 3-D models of facial geometry built from CT and laser-scanner data sets in terms 
of accuracy and precision? 
 

3. To identify if patients find the experience of making a facial mould using plaster of paris 
distressing and painful? 

 

4.2 Outcome 

Aim: To outline potential broad outcomes for the study which will reflect the research question aim(s). 

1. We will place the mask on the patients face (virtually, using 3-D computer modelling) and 
report errors measured between the immobilisation shell and the patient’s skin. This will enable 
us to benchmark a range of algorithms used to segment the CT and extract a surface contour 
that could be used to print a shell. 

2. By comparing results of computer modelling with those reported for thermoplastic masks we 
can determine if the approach is viable.  

3. Patient responses to the questionnaire data will provide limited insight into their experience in 
the mould room. 
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5 STUDY DESIGN and METHODS of DATA COLLECTION AND DATA ANALYIS 

Aim: To describe the study design. To clearly describe the data collection methods and outline the 
roles involved in data collection. To clearly describe the data analysis methods. 

A suitable design should be chosen to reflect the aim(s) of the study and the chosen theoretical 
framework. A suitable design might include ethnography, interviews, focus groups, documents, and so 
on.  

The study aims to evaluate computer algorithms for automatically generating immobilisation masks. . 
CT data that is required, together with an accurate (ground truth) 3D facial model, for a small cohort of 
patients. An accurate surface model can be acquired in a few minutes using a hand-held laser 
scanner. The algorithms are implemented in MATLABTM a computer language used for prototyping 
and modelling. This software environment allows us to construct a 3D models derived from the CT and 
laser scanner data. The CT-derived model will be evaluated and compared with the acquired laser 
model, using the same programming tool. We have tested this approach with other objects, e.g. 
Rando-Phantom, 3D printed Geometric Objects etc. using CT data acquired at Ipswich Hospital NHS 
Trust [Ryalat 2016].  We now need to show the approach works in a clinical setting. 

Patients are asked to complete a short questionnaire regarding their experience in the mould room 
and their responses are recorded on a Likert scale. Since the cohort is only 12 patients the results will 
not be subject to statistical analysis. The questionnaire results may be used to inform a secondary 
research question and to motivate a future study involving a larger number of participants. 

 

6 STUDY SETTING 

 Aim: To state where the data will be collected, explain what activities will take place in that 
site, and justify the choice of site and any special requirements. 

Twelve patients undergoing radiotherapy treatment for head and neck cancer at the Norfolk and 
Norwich University Hospital (NNUH) NHS Foundation Trust will be recruited by the oncology team. 
Their treatment will progress normally and the CT planning data will be archived and anonymised and 
copied to researchers at UEA. Additional data, captured by a hand held laser scanner will be gathered 
by Mohammad Ryalat. This will take place at NNUH (under clinical supervision). The laser scanning is 
non-intrusive and the scan can be completed in approximately 15 minutes. The scanning process 
involves the patient sitting in a chair while a researcher performs the scan. As a precautionary 
measure we require the patient to wear an eye mask as although the scanner is CE marked and 
completely safe patients' may have read reports in the press of eye damage resulting from the illegal 
use of higher powered lasers. The process can be completed in stages (e.g. 3 x 5 minutes) with a 
break of 2-3 minutes between each session. The laser scanner will then be moved around the patient 
to obtain a set of 3D points forming the surface of the patient’s head. 

Patients will follow a normal treatment pathway, using an immobilisation shell manufactured normally 
(i.e. 'soft-drape' or 'hard-shell'). Once the mask has been manufactured (by mould room technicians) it 
will be scanned (in the mould room) using the laser scanner.  

 

7 SAMPLE AND RECRUITMENT 

7.1  Eligibility Criteria 

 

Aim: To define the study population/sample 
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12 subjects will be selected by NNUH consultant oncologists.  

 

7.1.1 Inclusion criteria  

 

12 Patients undergoing radiotherapy treatment for tumours affecting their head and neck at NNUH. 

Age - 18-69 years inclusive. Ethnicity and Socio economic grouping are not critical factors.  

 

7.1.2 Exclusion criteria  

 

Patients who are not able to give written informed consent (in English) and those who are outside of 
age range 18-69. 

 

7.2  Sampling 
 
Aim: To clearly explain and justify the detail of sampling in terms of volume and technique.  

 

7.2.1  Size of sample 

Aim: to explain the rationale behind the size of the sample.  

Total sample size is 12 subjects. The sample size was decided considering this is the first clinical study 
addressing 3D printed fixations for radiotherapy. The sample size (12) is considered as sufficient for a 
pilot feasibility study (i.e. suitable for inclusion in a PhD Thesis). The CT data sets comprise a far greater 
(in the order of 1000's) number of voxels indicative of air/skin interface. 

 

7.2.2  Sampling technique 

Aim: To describe the selection of participants. 

This section should detail the methods of selection used for example: 

  At random, snowball, convenience sampling, purposive sampling?  

 Where has the sample been derived from? 

 What is the rationale for this sampling strategy?  The rationale should reflect the 
methodological and theoretical framework for the study.  

 

The oncology department, Norfolk and Norwich University Hospital will identify patients who are 
planned to have head and neck radiotherapy. 

 

7.3  Recruitment 

Aim: To describe how participants are identified and recruited. 
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This section should give details of the participant eligibility screening process for the project including 
methods of identifying eligible participants/sample.  

 

7.3.1 Sample identification 

The oncology department, liaising with consultant oncologists at Norfolk and Norwich University 
Hospital will identify patients who are planned to have head and neck radiotherapy. The identification 
of potential participants does not involve reviewing or screening the identifiable personal information of 
patients, service users or any other person. No participants will be recruited neither by publicity 
through posters, leaflets, adverts or websites nor by Patient Identification Centres (PICs). Research 
participants will not receive any payments, reimbursement of expenses or any other benefits or 
incentives for taking part in this research. 

 

7.2.2 Consent 

Participants’ oncology consultant will identify the participants at their initial meeting. Trials and 

research radiographer, Sarah Barber will discuss with them about the nature and objectives of the 

study and possible risks associated with their participation. Patients will be informed of the study and 

given the Patient Information Sheet. The research radiographer will follow up on any patients who are 

willing to take part in the study, answer any questions and obtain informed consent. Potential 

participants will be given a minimum of 7 days to decide whether or not to take part and we will not 

recruit any participants who are involved in current research or have recently been involved in any 

research prior to recruitment. The patient information sheet explains that participants are free to 

withdraw at any time without giving any reason and without their medical care or legal rights being 

affected. 

 

8 ETHICAL AND REGULATORY CONSIDERATIONS 

Aim: To explain how the research question/aim(s) and design/methods fit into the ethical and 
regulatory framework. A clear explanation of the risk and benefits to the participants should be 
included as well as addressing any specific needs/considerations of the sample. State how the data 
collection methods used uphold the dignity of the participants.  

The protocol should also include a justification of how the protocol is in line with relevant legislation. 

 

8.1 Assessment and management of risk 

Aim: To describe a risk analysis plus risk management if the researcher were to come into information 
which had safeguarding implications.  

There are no clinical risks associated with this study. The laser used by the laser scanner is 

completely safe. Since we aim to capture facial features there is risk that the data may compromise 

patient anonymity. To mitigate this possibility and distinguishing features which appear in publications 

will be redacted.   

8.2  Research Ethics Committee (REC) review & reports 
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Aim: to demonstrate that the study will receive ethical review and approval from the necessary body 

Ethical approval via IRAS will be sought before the trial commences.   

8.3  Peer review 

Aim: to describe the peer review process for the study which should be instigated and/or approved by 
the sponsor. 

Publications arising from the preclinical research have been subject to peer review. Some reviewers 
identified the need for a clinical study, and their comments motivate this trial. 

 

8.4  Patient & Public Involvement 

Aim: to describe the involvement of the Public in the research 

Anecdotal evidence from patients (reported by Macmillan Cancer Support) suggests they find the mould 
room experience rather unpleasant and uncomfortable. 

   

8.5 Regulatory Compliance  

Aim: to demonstrate that the study will comply with regulations 

NNUH R&D management committee has approved the study.  

 

8.6  Protocol compliance  

Aim: to demonstrate how protocol compliance will be managed 

Protocol deviations represent a low risk and do not affect the patients’ treatment.   

 

8.7 Data protection and patient confidentiality  

Aim: To describe how patient confidentiality will be maintained and how the study is compliant with the 
requirements of the Data Protection Act 1998 

All investigators and study site staff will comply with the requirements of the Data Protection Act 1998 

with regards to the collection, storage, processing and disclosure of personal information and will 

uphold the Act’s core principles. Data will be stored on NHS hospital computers in the Colney centre. 

Pseudononymised data will then be encrypted and transferred to university computers at UEA for data 

analysis. The stored data complies with UEA's Information Security Policy, which includes security 

standards, procedures and guidelines developed in accordance with ISO27001. The physical security 

arrangements for storage of personal data during the study will be under the UEA General Information 

Security Policy, V4.2. Each patient will be given a unique study identifier. A key to link the data to the 

patient will be held separately in a filing cabinet in the locked office of Mr Tom Rogues, NNUH 

Foundation Trust, Norwich, only accessible to Mr Rogues. Only NHS clinical staff will have access to 

personal data. Research monitors from the University of East Anglia may need to see data for the 

study to ensure best practice is maintained in line with University policy. Data will be made available to 

the institutional review board (IRB) if necessary. Pseudononymised data generated by the study will 
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be analysed by researchers in the School of Computing Sciences, UEA. Ms Sarah Barber (Trials & 

Research Radiographer at Norfolk & Norwich University Hospital NHS Foundation Trust) will have 

control of and act as the custodian for the data generated by the study. The data held at UEA will be 

destroyed 12 months after the end of the study. A data archive (DVD) will be held at Colney Centre, 

NNUH for 10 years. 

 

8.8 Indemnity 

Aim: to fully describe indemnity arrangements for the study 

The sponsor (UEA) is responsible for insurance and indemnity 

 

8.9 Amendments  

Aim: to describe the process for dealing with amendments 

Any necessary amendments will be discussed and agreed with 

Michal Sheridan, Research Study & Recruitment Facilitator (General Surgery, Haematology, 
Oncology, Plastic Surgery & Urology], R&D office, Level 3 East Norfolk & Norwich University Hospitals 
NHS Foundation Trust Colney Lane, Norwich, NR4 7UY. 

and we will seek further ethical approvals is necessary.  

8.10 Access to the final study dataset 

Aim: to describe who will have access to the final dataset 

NNUH Colney Centre will have access to the final dataset. 

 

9 DISSEMINIATION POLICY 

9.1  Dissemination policy 

Aim: to describe the dissemination policy for the study 

NNUH Colney Centre owns the data captured by the trial and will be acknowledged in publications arising 
from the study. The study will be reported in Mohammad Ryalat’s PhD Thesis, planned submission date: 
September 2017. The thesis will act as the final study report. Results will also be presented at appropriate 
UK conferences and an article will appear in a relevant scientific journal.  

 

9.2  Authorship eligibility guidelines and any intended use of professional writers 

Aim: to describe who will be granted authorship on the final study report 

Mohammad Ryalat (See 9.1). 

10 REFERENCES 

[Christiansen et al. 2012] Christiansen, R., Hansen, C., Nielsen, T., Johansen, J. and Brink, C. 
Comparison of Three Immobilisation Systems for Radiation Therapy in Head and Neck Cancer. 
Radiotherapy & Oncology, 103, S106, 2012. http://dx.doi.org/10.1016/S0167-8140 (12)70609-6 



 

 
 

Acquisition of 3D facial geometry of patients' 

scheduled for RT 

sSH 

 

                            

 

Version 3.0 10.11.16 

 

[Crum et al. 2006] Crum, W., Camara, O., Hill, D., Nov. 2006. Generalized overlap measures for 
evaluation and validation in medical image analysis. Medical Imaging, IEEE Transactions on 25 (11), 
1451–1461. 

[Fisher et al, 2014] Fisher, M., Applegate, C., Ryalat, M., Laycock, S., Hulse, M., Emmens, D., Bell, D. 
(2014) Evaluation of 3D Printed Immobilisation Shells for Head and Neck IMRT in Open Journal of 
Radiology 04. pp. 322-328, 2014. http://dx.doi.org/10.4236/ojrad.2014.44042 

[Hulse et. al, 2012] M. Hulse, M. Tam, S. Isherwood, C. Scrase, S. Laycock, D. Mortimore, J. Patman, 
S. Short and D. Bell, Production of 3-D printer-generated radiotherapy shells using DICOM CT, MRI or 
3-D surface laser scan – Acquired STL files: Preclinical feasibility studies, 8th NCRI Cancer 
Conference, Liverpool, November 2012.  

[Laycock et al., 2015] Laycock, S. D., Hulse, M., Scrase, C. D., Tam, M. D., Isherwood, S., Mortimore, 
D. B., Emmens, D., Patman, J., Short, S. C., Bell, G. D. (2015) Towards the production of radiotherapy 
treatment shells on 3D printers using data derived from DICOM CT and MRI: preclinical feasibility 
studies in Journal of Radiotherapy in Practice 14. pp. 92-98). 

[Ryalat 2016]  Mohammad Hashem Ryalat, Daniel Emmens, Mark Hulse, Duncan Bell, Zainab Al-
Rahamneh, Stephen Laycock, and Mark Fisher (2016). Evaluation of Particle Swarm Optimisation for 
Medical Image Segmentation, In J. Swiatek and J.M. Tomczak (eds.), Advances in Systems Science, 
Advances in Intelligent Systems and Computing 539, DOI 10.1007/978-3-319-48944-5_6 

[Verhey, 2006] Verhey, L.J., Immobilizing and positioning patients for radiotherapy, Seminars in 
Radiation Oncology, 2006. 

 

 



 

 

 

 

Participant Information Sheet (PIS) 



 
 
 

IRAS Ref: 209119  Version: 3.0 17.11.16 

Clinical Trial: Acquisition of 3-D facial geometry of patients’ scheduled for head and neck RT.  

 

PARTICIPANT INFORMATION SHEET 

The School of Computing Sciences, UEA in collaboration with University Campus Suffolk and 
Norfolk and Norwich University Hospital NHS Trust are investigating an alternative non-invasive 
technique for manufacturing immobilisation masks used during radiotherapy treatment. Methods 
for creating computer models for the mask are being investigated as part of a PhD at UEA and 
we seek your cooperation to help the student complete his research. 

You have been invited to participate in this study because you have been prescribed a course of 
radiotherapy treatment that requires an immobilisation mask. The manufacture and fitting of the 
mask will involve a visit to the Mould Room. It would be helpful if you would tell us something 
about your experience of this process by completing a short questionnaire after your visit.  

This study aims to evaluate a new approach to manufacturing immobilization masks but the new 
masks will not be used in your treatment. If you decide not to take part in the study then your 
treatment will progress normally. However, if you agree to take part in the trial, further 
measurements of your head will be made using a hand held laser scanner. This procedure is non-
invasive and completely safe but it will take about 15 minutes of your time.  

We hope to develop a process that allows the immobilization mask to be manufactured by a 3-D 
printer using a model constructed from your CT scan.  The digital information we collect will allow 
us to build a digital 3-D model of your head that in turn will allow us to assess the accuracy of the 
model built from CT. We do not need to physically manufacture a printed immobilisation mask 
to assess the accuracy of the model as we can do this using a computer simulation. The information 
we collect will be stored and analysed by the School of Computing Sciences, UEA and results of 
the analysis will be published in a PhD thesis and presented at relevant conferences and in journals. 
If successful, we hope that in the future, our non-invasive approach to manufacturing 
immobilisation masks may be adopted within the NHS and plaster of Paris moulds will no longer 
be needed.  

To ensure patient confidentiality, the data is anonymised and only a fragment of the model will be 
included in any published work arising from the study. 

Your participation in this study is entirely voluntary and will not affect your treatment outcome.  
Anonymised data generated by the study will be analysed by researchers in the School of 
Computing Sciences, UEA. Ms Sarah Barber (Trials & Research Radiographer at Norfolk & 
Norwich University Hospital NHS Foundation Trust) will manage the anonymization process and 
Dr Mark Fisher, School of Computing sciences, UEA will act as custodian for the data generated 
by the study. The data held at UEA will be destroyed after a period of 10 years. All information 
which is collected about you during the course of the study will be kept within the hospital. Any 
information about you which leaves the hospital will have your name and address removed so that 
you cannot be recognised. Measurements gathered as part of this study will enable approaches 
developed as part of the PhD to be quantitatively evaluated and compared, thus allowing 
researchers determine if the approach is clinically viable. Your treatment will progress normally 
and so there is very little risk involved in participating in the study. However, if you have any 
concern about any aspect of this study, you should ask to speak to Ms Sarah Barber.  She will do 
her best to answer your questions. You may withdraw from the study at any time without affecting 
your planned treatment and any data or models collected as part of the study will be destroyed. 
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Radiotherapy treatment is part of your routine care. If you take part in this study you will not 
undergo any additional radiotherapy sessions and the radiotherapy dose you receive will not be 
affected. Radiotherapy treatment involves the use of ionising radiation to form images of your 
body, kill cancerous cells and provide your doctor with other clinical information. However, 
ionising radiation can cause cell damage that may, after many years or decades, turn cancerous. 
The chances of this happening to you are the same whether you take part in this study or not.  

Laser-scanning session 

After completing the questionnaire we will ask you to sit in an office chair and the PhD student, 
supervised by a nurse or radiographer, will be scan your head using a hand held laser scanner, held 
at a distance of 20-60 cm, as illustrated below.  The procedure will take about 15 minutes and 
during this time you will be asked to wear an eye mask. The procedure is non-invasive, try to relax 
during the session and feel free to ask for breaks at any time.  

Is the laser scanner safe? 

The low power laser used in the scanner is no more powerful than a laser pointer. The laser 
machine is CE marked which means that the machine complies with the essential requirements of 
the relevant European health, safety and environmental protection legislation. However, there is a 
small risk of eye damage if one looks directly at a laser and for this reason we will cover your eyes 
while being scanned. 

 

  

 

If you have any concerns about participating in the project, require any further information about 
the project, or would like to receive a summary of the results of the research please contact either: 

Dr Mark Fisher, School of Computing Sciences, UEA, Norwich, NR4 7TJ. 
Tel: 01603 592671 Email: mark.fisher@uea.ac.uk  
 
Ms Sarah Barber, Trials & Research Radiographer at Norfolk & Norwich University Hospital NHS 
Foundation Trust. Colney Centre, East Block Level 1, Colney Lane, Norwich, Norfolk, NR4 7UY. 
Tel: 01603 646736 Email: sarah.barber@nnuh.nhs.uk 
 
Thank you. 

mailto:sarah.barber@nnuh.nhs.uk


 

 

 

 

Consent Form 



 
 
 

IRAS Ref: 209119  Version 3.0 10.11.16 
 

Project Lead: Mark Fisher 
School of Computing Sciences 
University of East Anglia 
Norwich Research Park, 
Norwich, NR4 7TJ 

Centre Number:  
Study Number: 
Patient Identification Number for this trial: 

CONSENT FORM 

Title of Project: Construction of 3D-Printed Immobilisation Masks for Use in Radiotherapy Treatment of 
Head-and-Neck Cancers. 
Name of Researcher: Mohammad Ryalat 
 
1. I confirm that I have read and understand the information sheet dated 10.11.16 (version 

3.0) for the above study.  I have had the opportunity to consider the information, ask 
questions and have had these answered satisfactorily.  

 
 
2. I understand that my participation is voluntary and that I am free to withdraw at any time 

without giving any reason, without my medical care or legal rights being affected. 
   

                                                                                                       

3. I understand that relevant sections of my medical notes and data collected during the study 
may be looked at by individuals from the NHS Trust, from regulatory authorities or from 
The University of East Anglia, where it is relevant to my taking part in this research.  I give 
permission for these individuals to have access to my records. 

 

 

4. I agree to take part in the above study.    
 

 

 

                   

Name of Participant              Date in full                Signature 

 in full 
 

                

Name of Person taking                  Date in full   Signature  

 consent in full, as per  

 study Delegation Log   

1 for patient; 1 for researcher; 1 to be kept with hospital notes 
 

Initial Box 

Initial Box 

Initial Box 

Initial Box 



 

 

 

 

Good Clinical Practice Certificate (GCP) 



CERTIFICATE of ACHIEVEMENT

This is to certify that

Mohammad Ryalat

has completed the course

Introduction to Good Clinical Practice eLearning (Secondary
Care)

June 29, 2016
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