19,434 research outputs found

    Authoring a Web‐enhanced interface for a new language‐learning environment

    Get PDF
    This paper presents conceptual considerations underpinning a design process set up to develop an applicable and usable interface as well as defining parameters for a new and versatile Computer Assisted Language Learning (CALL) environment. Based on a multidisciplinary expertise combining Human Computer Interaction (HCI), Web‐based Java programming, CALL authoring and language teaching expertise, it strives to generate new CALL‐enhanced curriculum developments in language learning. The originality of the approach rests on its design rationale established on the strength of previously identified student requirements and authoring needs identifying inherent design weaknesses and interactive limitations of existing hypermedia CALL applications (HĂ©mard, 1998). At the student level, the emphasis is placed on three important design decisions related to the design of the interface, student interaction and usability. Thus, particular attention is given to design considerations focusing on the need to (a) develop a readily recognizable, professionally robust and intuitive interface, (b) provide a student‐controlled navigational space based on a mixed learning environment approach, and (c) promote a flexible, network‐based, access mode reconciling classroom with open access exploitations. At the author level, design considerations are essentially orientated towards adaptability and flexibility with the integration of authoring facilities, requiring no specific authoring skills, to cater for and support the need for a flexible approach adaptable to specific language‐learning environments. This paper elaborates on these conceptual considerations within the design process with particular emphasis on the adopted principled methodology and resulting design decisions and solutions

    Template-driven teacher modelling approach : a thesis submitted in partial fulfilment of the requirements for the degree of Master of Science in Information Science at Massey University, Palmerston North

    Get PDF
    This thesis describes the Template-driven Teacher Modeling Approach, the initial implementation of the template server and the formative evaluation on the prototype. The initiative of Template-driven teacher modeling is to integrate the template server and intelligent teacher models in Web-based education systems for course authoring. There are a number of key components in the proposed system: user interface, template server and content repository. The Template-Driven Teacher Modeling (TDTM) architecture supports the course authoring by providing higher degree of control over the generation of presentation. The collection of accumulated templates in the template repository for a teacher or a group of teachers are selected as the inputs for the inference mechanism in teacher's model to calculate the best representation of the teaching strategy, and then predict teacher intention when he or she interacts with the system. Moreover, the presentation templates are kept to support the re-use of the on-line content at the level of individual screens with the help of Template Server

    Semantic-based policy engineering for autonomic systems

    No full text
    This paper presents some important directions in the use of ontology-based semantics in achieving the vision of Autonomic Communications. We examine the requirements of Autonomic Communication with a focus on the demanding needs of ubiquitous computing environments, with an emphasis on the requirements shared with Autonomic Computing. We observe that ontologies provide a strong mechanism for addressing the heterogeneity in user task requirements, managed resources, services and context. We then present two complimentary approaches that exploit ontology-based knowledge in support of autonomic communications: service-oriented models for policy engineering and dynamic semantic queries using content-based networks. The paper concludes with a discussion of the major research challenges such approaches raise

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    Defining adaptation in a generic multi layer model : CAM: the GRAPPLE conceptual adaptation model

    Get PDF
    Authoring of Adaptive Hypermedia is a difficult and time consuming task. Reference models like LAOS and AHAM separate adaptation and content in different layers. Systems like AHA! offer graphical tools based on these models to allow authors to define adaptation without knowing any adaptation language. The adaptation that can be defined using such tools is still limited. Authoring systems like MOT are more flexible, but usability of adaptation specification is low. This paper proposes a more generic model which allows the adaptation to be defined in an arbitrary number of layers, where adaptation is expressed in terms of relationships between concepts. This model allows the creation of more powerful yet easier to use graphical authoring tools. This paper presents the structure of the Conceptual Adaptation Models used in adaptive applications created within the GRAPPLE adaptive learning environment, and their representation in a graphical authoring tool

    Model-driven description and validation of composite learning content

    Get PDF
    Authoring of learning content for courseware systems is a complex activity requiring the combination of a range of design and validation techniques. We introduce the CAVIAr courseware models allowing for learning content description and validation. Model-based representation and analysis of different concerns such as the subject domain, learning context, resources and instructional design used are key contributors to this integrated solution. Personalised learning is particularly difficult to design as dynamic configurations cannot easily be predicted and tested. A tool-supported technique based on CAVIAr can alleviate this complexity through the validation of a set of pedagogical and non-pedagogical requirements. Courseware validation checks intra- and inter-content relationships and the compliance with requirements and educational theories

    Modelling Reactive Multimedia: Design and Authoring

    Get PDF
    Multimedia document authoring is a multifaceted activity, and authoring tools tend to concentrate on a restricted set of the activities involved in the creation of a multimedia artifact. In particular, a distinction may be drawn between the design and the implementation of a multimedia artifact. This paper presents a comparison of three different authoring paradigms, based on the common case study of a simple interactive animation. We present details of its implementation using the three different authoring tools, MCF, Fran and SMIL 2.0, and we discuss the conclusions that may be drawn from our comparison of the three approaches
    • 

    corecore