3 research outputs found

    Medical Telementoring Using an Augmented Reality Transparent Display

    Get PDF
    Background The goal of this study was to design and implement a novel surgical telementoring system called the System for Telementoring with Augmented Reality (STAR) that uses a virtual transparent display to convey precise locations in the operating field to a trainee surgeon. This system was compared with a conventional system based on a telestrator for surgical instruction. Methods A telementoring system was developed and evaluated in a study which used a 1 × 2 between-subjects design with telementoring system, that is, STAR or conventional, as the independent variable. The participants in the study were 20 premedical or medical students who had no prior experience with telementoring. Each participant completed a task of port placement and a task of abdominal incision under telementoring using either the STAR or the conventional system. The metrics used to test performance when using the system were placement error, number of focus shifts, and time to task completion. Results When compared with the conventional system, participants using STAR completed the 2 tasks with less placement error (45% and 68%) and with fewer focus shifts (86% and 44%), but more slowly (19% for each task). Conclusions Using STAR resulted in decreased annotation placement error, fewer focus shifts, but greater times to task completion. STAR placed virtual annotations directly onto the trainee surgeon's field of view of the operating field by conveying location with great accuracy; this technology helped to avoid shifts in focus, decreased depth perception, and enabled fine-tuning execution of the task to match telementored instruction, but led to greater times to task completion

    Markerless Augmented Reality via Stereo Video See-Through Head-Mounted Display Device

    Get PDF
    Conventionally, the camera localization for augmented reality (AR) relies on detecting a known pattern within the captured images. In this study, a markerless AR scheme has been designed based on a Stereo Video See-Through Head-Mounted Display (HMD) device. The proposed markerless AR scheme can be utilized for medical applications such as training, telementoring, or preoperative explanation. Firstly, a virtual model for AR visualization is aligned to the target in physical space by an improved Iterative Closest Point (ICP) based surface registration algorithm, with the target surface structure reconstructed by a stereo camera pair; then, a markerless AR camera localization method is designed based on the Kanade-Lucas-Tomasi (KLT) feature tracking algorithm and the Random Sample Consensus (RANSAC) correction algorithm. Our AR camera localization method is shown to be better than the traditional marker-based and sensor-based AR environment. The demonstration system was evaluated with a plastic dummy head and the display result is satisfactory for a multiple-view observation

    An augmented reality approach to surgical telementoring

    No full text
    corecore