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Conventionally, the camera localization for augmented reality (AR) relies on detecting a known pattern within the captured images.
In this study, a markerless AR scheme has been designed based on a Stereo Video See-Through Head-Mounted Display (HMD)
device.TheproposedmarkerlessAR scheme can be utilized formedical applications such as training, telementoring, or preoperative
explanation. Firstly, a virtual model for AR visualization is aligned to the target in physical space by an improved Iterative Closest
Point (ICP) based surface registration algorithm, with the target surface structure reconstructed by a stereo camera pair; then, a
markerless AR camera localization method is designed based on the Kanade-Lucas-Tomasi (KLT) feature tracking algorithm and
the Random Sample Consensus (RANSAC) correction algorithm. Our AR camera localization method is shown to be better than
the traditional marker-based and sensor-based AR environment. The demonstration system was evaluated with a plastic dummy
head and the display result is satisfactory for a multiple-view observation.

1. Introduction

In the past few decades, augmented reality (AR) has become
an attractive research topic with potentials in the fields
of machine vision and visualization techniques. As a part
of mixed reality and an alternative to virtual reality (VR),
AR allows users to see virtual objects overlay the physical
environment at the same time. According to the definition by
Azuma [1, 2], AR system has three important properties: first,
it combines real and virtual objects in a real environment;
second, it runs interactively, and in real-time; and third, it
registers (aligns) real and virtual objects with each other. AR
creates a “next generation, reality-based interface of human-
computer interaction” [3], provides information beyondwhat
the user can normally see, and augments our real world
experiences [4, 5].

Over the years, the applications of AR visualization
had been expanded to include more and more areas, such
as engineering, industrial manufacturing, navigation, enter-
tainment, and especially medical applications. The aim of
medical AR-based applications starts from a simple concept,
to see through the virtual object and see the patient’s medical

information along with the patient. AR brings benefits to
medical applications since it can help visualize medical
information along with the patient at the same time and
within the same physical space. Inmedical fields, AR creates a
way for advancedmedical display [6], which can be applied to
telementoring [7], medical procedure training [8], ormedical
data visualization [9]. Recently, applying augmented reality
(AR) technology to the image-guided navigation system
(IGNS) has become a new trend in medical technologies.
A medical AR system merges medical images or anatomical
graphic models into a scene of the real world [6, 10, 11].
From the literatures, we find that a successful medical AR
system has to deal with two major problems: first, how to
accurately align preoperative medical information with the
physical anatomy and, second, how to effectively and clearly
provide virtual anatomical information.

Conventional medical systems and applications display
medical information such as image slices or anatomical
structures using the virtual reality (VR) coordinate system on
a regular screen.Therefore, surgeons using such systems need
to have a good spatial concept in order to interpret the virtual-
to-real world transformation. In order to train a surgeon
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to have a god spatial concept, this usually requires a lot of
clinical experience. In contrast, AR provides an attractive
alternative for medical information visualization because the
displays use the real world coordinate system. In general,
a video see-through AR system uses a movable camera to
capture images from the physical space and draws virtual
objects onto the correct positions on the images. As a result,
the way to estimate the spatial relationship between the
camera and the physical space, that is, camera localization,
is the most important problem to be solved in an AR
system [12, 13]. The spatial relationship is also known as
the extrinsic parameters of the AR camera, which are three
translation parameters and three rotation parameters, and
can be referred to as the position and orientation of the
camera. A precise estimation of the extrinsic parameters
ensures that the medical information can be accurately
rendered on the scene captured from the physical space. A
conventional approach to estimate these extrinsic parameters
is to place a black-white rectangle pattern within the scene
which can be used as a reference to be detected in the camera
field of view (FOV) [14, 15] using computer vision techniques.
Once the reference pattern is detected in the AR camera
frame, the extrinsic parameters can be determined using
the perspective projection cameramodel. Alternatively, some
studies attach a couple of retroreflectivemarkers, for example,
infrared reflectivemarkers, on the AR camera and track these
markers by using an optical tracking sensor [13, 16, 17] in
order to estimate the position and orientation of the camera
by using the positions of these markers. However, in the
pattern-based or sensor-basedARdisplay, the FOVof camera
is limited because these artificial markers should be observed
with the FOV. In addition, the accuracy of AR rendering
depends on the size and likelihood of correct identification
of the pattern or markers within the FOV.

In this paper, we present a markerless AR scheme for
medical applications. The markerless AR scheme is mainly
based on a Video See-Through Head-Mounted Display
(HMD) device with a stereo camera on it. We use the
stereo camera to reconstruct feature point cloud of the target
for AR visualization. An improved ICP algorithm is then
applied to align the surface data to the virtual object created
from medical information. The improved ICP algorithm has
two additional characteristics. First, a random perturbation
technique is applied to provide the algorithm opportunities
to escape the local minima. Second, a weighting strategy is
added to the cost function of the ICP in order to weaken the
influence of outlier points.

When the AR camera moves, feature points are then
tracked by using the Kanade-Lucaz-Tomasi tracking algo-
rithm [18] on a frame by frame basis while updating the
extrinsic parameters. Moreover, the Random Sample Con-
sensus (RANSAC) [19] algorithm is applied to keep the KLT
tracking results stable in each frame in order to make the
AR visualization smoother and more accurate. Furthermore,
considering the target for AR rendering might be out of the
FOV of the AR camera, a reinitialization step is necessary
and can be accomplished by applying the Speeded-UpRobust
Features (SURF) [20] feature matching algorithm for target
detection.

The remainder of this paper is organized as follows:
in Section 2, we report on some related works about AR
visualization. Section 3 includes all material and methods of
the proposed system. Experimental results are presented and
discussed in Section 4. Finally, Section 5 gives the conclusion
of this work.

2. Related Works

Camera localization is a key component in dense 3D map-
ping, Simultaneous Localization and Mapping (SLAM) and
full-range 3D reconstruction. It is also the keypoint problem
of video-based AR visualization since we need to know the
pose and position of the camera in order to render the virtual
object onto the camera scene. There are different types of
methods for camera localization, and the most well-known
category of camera localization methods belongs to the
planar-based methods. In the past 10 years, the planar-based
methods have become one of themajor types in researches for
AR camera localization methods; one of the examples is the
widely used AR environment development library ARToolkit
[21]. In this type of method, a predesigned rectangle marker
would be placed inside the camera’s FOV, and a tracking
algorithm is then applied to the captured frames in order to
track the marker [22, 23].

Another category is the landmark-based approaches [24].
In this type of method, several landmark feature points are
extracted from the camera image by using feature extraction
algorithms. Descriptors of these landmark feature points are
also extracted for tracking and comparison with the 3D
locations of these landmark feature points. In each frame,
these landmark feature points are picked by tracking or
comparing their corresponding feature descriptors’ similar-
ities, and the pose of the camera can then be determined
[25, 26]. Besides, Kutter et al. [27] proposed a marker-
based approach to render the patient’s volume data on a
HMD device. Their scheme provides an efficient volume
rendering in an AR workspace and solves the problem of
occlusion by the physician’s hands. Later,Wieczorek et al. [28]
extended this scheme by improving the occlusion due to the
medical instrument and added new functions such as virtual
mirror to the AR system. Suenaga et al. [29] also proposed a
fiducial marker-based approach for on-patient visualization
of maxillofacial regions by using an optical tracking system
to track the patient and using a mobile device to visualize the
internal structures of the patient’s body. Nicolau et al. [30]
used 15 markers to perform the registration in order to use
AR to overlay a virtual liver over the patient. Debarba et al.
[31] proposed a method to visualize anatomic liver resections
in anAR environmentwith the use of a fiducialmarker, which
made locating the position and tracking of the medical data
in the scene possible.

Recently, there are somemarkerless AR systems proposed
in the literatures using various camera configurations. For
example, Maier-Hein et al. [32] implemented a markerless
mobile AR system by using a time-of-flight camera mounted
on a portable device, that is, a tablet PC, to see the patient’s
anatomical information. The registration method of this
approach is an anisotropic variant of the ICP algorithm and
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the speed performance is about 10 FPS. By using a RGB-
D senor, such as the Microsoft Kinect, Blum et al. [33]
utilize a display device to augment the volume information
of a CT dataset onto the user for anatomy education. They
employed a skeleton tracking algorithm to estimate the pose
of the user and scaled the generic CT volume according
to the size of the user before performing the AR overlay.
Since the depth data provided by Kinect are not sufficiently
accurate for pose estimation, Meng et al. [34] proposed an
improved method by using landmarks to increase the system
performance. Based on a similar concept, Macedo et al.
[35] developed an AR system to provide on-patient medical
data visualization using Microsoft Kinect. They used the
KinectFusion algorithmprovided byMicrosoft to reconstruct
the patient’s head data and a variant of the ICP algorithm
was used in conjunction with a face tracking strategy for
use during the medical AR. An extension to this approach
has been proposed recently in [36], in which a multiframe,
nonrigid registration scheme was presented to solve the
problem of displacement of natural markers on the patient’s
face. In order to speed up the huge computations required
for a real-time nonrigid registration, a lot of GPUs are needed
and the implementation of this systemwould be very complex
compared with the previous methods. Moreover, because the
patient undergoing an operation would be under anesthesia,
the appearance of his face would be unchanged, so there is no
need to perform nonrigid registration to align the CT data to
patient’s face. In summary, although the Microsoft Kinect is
popular for AR applications, it is inconvenient for use in the
clinical environment because its volume is too big to mount
on the physician’s head.

In light of these previous works, we propose a simple but
efficient framework for markerless augmented reality visual-
ization, which is based on the Stereo Video See-Through AR.
Themarkerless AR procedure mainly follows the principle of
landmark-based camera localization approach. An improved
ICP algorithm is applied for alignment of the virtual object
and the feature point cloud in the physical space. This
framework improves the previous studies in markerless AR
visualization by using a light-weight stereo HMD instead of a
heavier device such as theMicrosoftKinect, and it can achieve
amore accurate registration result by using an improved form
of the ICP.This system can be applied tomedical applications,
such as training, telementoring, or preoperative explanation.

3. Materials and Methods

The entire workflow of the proposed stereo AR scheme is
shown in Figure 1. Feature point cloud of the target object
is extracted and reconstructed by the stereo camera. The
improved ICP-based surface registration algorithm had been
designed and applied in order to align the virtual model to
the feature point cloud of the target in the physical space.

3.1. 3D Feature Point Cloud Reconstruction. Firstly, a stereo
camera setup is used to acquire 3D information of the target
in the world coordinate system (WCS). The SURF algorithm
is then utilized to extract feature points from the target object

region in left camera image. The corresponding points in
right camera image are then obtained by comparing the SURF
feature points in the right imagewith the aid of stereo epipolar
constrain. The object region is recorded for later use in the
tracking recovery stage.

According to pin-hole camera model, the perspective
projection between a 3D object point (𝑋,𝑌, 𝑍) and its
projection point (𝑥, 𝑦) can be described as
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where 𝐾 denotes the camera’s intrinsic parameters. The
parameter 𝑓
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So if a stereo camera pair is well-calibrated, we can obtain
intrinsic parameters and extrinsic parameters of the both
camera. For a feature point 𝑝
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we can calculate a projection line in the WCS from the
perspective projection equation and the projectionmatrix P
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The middle point of the common perpendicular between the
two projection lines in the WCS is then selected as the 3D
object point of the corresponding pair (𝑝

𝐿
,𝑝
𝑅
). By calculating

the 3D object point of each feature-corresponding pair, we
can obtain a 3D feature point cloud of the target object.
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Figure 1: Workflow of the proposed AR system.

3.2. Improved-ICP Algorithm for Virtual Model Alignment.
In this study, we designed an improved ICP-based surface
registration algorithm for spatial alignment of the virtual
object and the feature point cloud. The improved ICP algo-
rithm is based on the original ICP registration algorithm,
which is the most widely used method to solve the 3D
surface registration problem. However, ICP suffers from two
important weaknesses in dealing with local minimum and
outliers. Therefore, we added two strategies to improve the
ICP algorithm in order to overcome these drawbacks. A
weighting function is added to decrease the influence of
outliers, and a randomperturbation scheme is utilized to help
ICP escape from the local minimum.

3.2.1. Distance-Based Weighting Function. Assume that the
3D feature point cloud of the target 𝑃target is the floating data
𝐴 with 𝑚 points {𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑚
} and the surface point cloud

of the virtual object is the reference data 𝐵 with 𝑛 points
{𝑏
1
, 𝑏
2
, . . . , 𝑏

𝑛
}. The original ICP used rigid transformation to

align these two 3D data point sets in an iterative manner. In
each iteration of ICP, every point 𝑎

𝑖
in 𝐴 first finds its closest

point 𝑏
𝑗
in 𝐵, and a cost function 𝐹 is then evaluated based on

the distance between each corresponding pair (𝑎
𝑖
, 𝑏
𝑗
). In our

improved ICP algorithm, we modified the cost function 𝐹 of
the ICP by adding a weighting function to the distances of all
closest corresponding pairs (𝑎

𝑖
, 𝑏
𝑗
) in order to deal with the

problem of outliers, as shown in
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where 𝑤
𝑖
is a distance-based weighting function, determined

according to the median of the distances of all the corre-
sponding pairs, as defined by
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3.2.2. Random Perturbation Scheme. The way that ICP
reaches a local minimum is by using a gradient descent
approach. In each iteration of the ICP, the cost function
is evaluated at the current solution and then moves along
the direction of gradient to the local minimum. When the
registration reaches convergence, we can get a transformation
solution 𝑇 which projects a set of points onto another set
of points, where the total sum of the distances between
these two point sets is the smallest. Although the actual
solution space of the cost function 𝐹 is multidimensional
since transformation 𝑇 comprises three rotation operations
(𝑅
𝑥
, 𝑅
𝑦
, 𝑅
𝑍
) and three translation operations (𝑇

𝑥
, 𝑇
𝑦
, 𝑇
𝑧
),

for the sake of convenience we will explain the concept of
perturbation strategy using a one-dimensional solution space
example as illustrated in Figure 2. Suppose the initial position
in solution space before using ICP is 𝑇Init and the converged
solution is 𝑇temp; thus, the ICP registration would reach 𝑇temp
from𝑇Init by exploring the range of |𝑇Init−𝑇temp|. Let 𝑟 denote
rotation element 𝑅 from the initial solution to the converged
solution; that is, 𝑟 = |𝑇Init − 𝑇temp|. The rotation in each
direction for perturbation is determined by using a parabolic
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Figure 2: Solution space of ICP cost function 𝐹.

probability density function, as denoted in (7). Larger values
have relative higher probabilities, which provide a greater
chance to escape from the local minimum:

𝑝 (𝑦) =

{{

{{

{

3𝑦
2

2𝛼3𝑟3
if − 𝛼𝑟 < 𝑦 < 𝛼𝑟

0 otherwise.
(7)

3.2.3. Improved-ICP Algorithm. Figure 3 shows the flowchart
of the improved-ICP registration scheme. The detailed steps
of the improved ICP are described as follows.

Step 1. Perform the standard ICP registration to align floating
data𝐴 to reference data 𝐵. The initial position in the solution
space is denoted as𝑇Init and the converged solution is denoted
as 𝑇temp. The final value of the cost function 𝐹 is recorded as
the current cost 𝐶󸀠.

Step 2. Check whether 𝐶󸀠 is better than the current best cost
of ICP 𝐶best or not. If it is, accept the transformation 𝑇temp as
the temporal best solution 𝑇best, update the best cost 𝐶 by 𝐶󸀠,
and go on to Step 3. Otherwise, move to Step 4.

Step 3. Perturb the aligned data 𝐴 with a transform 𝑇perturb.
A transformation 𝑇perturb is selected according to (7). The
transformation 𝑇perturb is then applied to the floating data 𝐴
and the algorithm moves back to Step 1 for performing ICP
registration.

Step 4. Check whether the result meets the stopping criteria
or not. If the best cost 𝐶 is below a threshold 𝐶thres or the
count of repetition reaches a certain value 𝑘, the algorithm
stops and outputs the final transformation 𝑇best. Otherwise,
go on to Step 5.

Step 5. Check if the perturbation range needs to be expanded
or not. If the cost function is not improved after 𝑛 times of
perturbations, then we scale 𝛼 in (7) to extend the searching
range. Otherwise, the searching range does not need to

be extended. After the decision of whether to extend the
perturbation range or not is made, the algorithm goes back
to Step 3.

3.3. Markerless AR Visualization

3.3.1. Tracking and Camera Pose Estimation. The flowchart
for the procedure for markerless AR visualization is shown in
Figure 4. The KLT tracker takes turns to track the extracted
feature points in the AR image. Assuming the tracking result
in each frame is denoted as a point set 𝑞

𝑡
, initially we

randomly select a number of 𝑁
𝑅
points from 𝑞

𝑡
. The first

estimation of extrinsic parameters is thus calculated by using
the EPNP camera pose estimation algorithm [40]. Then, we
use these extrinsic parameters to project the 3D points 𝐷

𝑞

of these features onto the AR frame, obtaining a set of 2D
projective points 𝑞proj, which has the number of 𝑁

𝑞
points.

Ideally, if all points are being tracked correctly, the projective
points 𝑞proj and the tracking points 𝑞𝑡 in camera image should
be overlapping or very close to each other. The 𝐿

2
-norm

distance,𝑑
𝑖
, for each pair of projective point 𝑞proj,𝑖 and tracked

point 𝑞
𝑡,𝑖
, is as shown in

𝑑
𝑖
=
󵄩󵄩󵄩󵄩󵄩
𝑞
𝑡,𝑖
− 𝑞proj,𝑖

󵄩󵄩󵄩󵄩󵄩2
. (8)

If 𝑑
𝑖
is greater than a predefined threshold 𝜅, then the point

𝑞
𝑖
is considered as an outlier, that is, a tracking-failed point.

Otherwise, the point 𝑞
𝑖
is an inlier. Here, we choose three

pixels for the threshold 𝜅, which makes the AR display more
stable. By determining whether every point of 𝑞

𝑡
is inlier or

not, the “inlier rate” of this tracking result 𝑞
𝑡
is measured,

which implies the rate of how many points are being tracked
correctly in this frame. The inlier rate 𝑟

𝑡
of a frame in time 𝑡

is defined as

𝑟
𝑡
=

𝑁Inliers
𝑁Inliers + 𝑁Outliers

, (9)

where 𝑁Inliers stands for the number of feature points which
are tracked correctly and 𝑁Outliers represents the number of
outliers. If the inlier rate is higher than a predefined threshold
𝜁, it indicates that this estimation of extrinsic parameters in
the current frame is highly reliable and therefore we can use
this estimation result of extrinsic parameters to correct the
outliers. If a point is considered as an outlier, its projective
point is used to replace this outlier point. The threshold 𝜁 is
set to 0.8 in this study.

On the other hand, if the inlier rate is less than 𝜁, the
system randomly selects a different group in 𝑞

𝑡
to estimate

another set of extrinsic parameters. The inlier rate 𝑟
𝑡
is then

calculated again after finding projecting points 𝑞proj of 3D
points, 𝐷

𝑞
. If this process is performed over a times and all

inliers rates 𝑟
𝑡
are less than 𝜁, the system is determined as a

tracking failure, and a tracking recovery is required.

3.3.2. Tracking Recovery. When the tracking fails, we use the
SURF feature comparison method as a reference to help the
system recover to the original tracking status. As mentioned
above, in the step of feature point cloud reconstruction,
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a set of SURF keypoints is extracted from the target region
𝐼target and denoted as ptemp, while their corresponding SURF
descriptors𝐷temp are then estimated, as shown in

ptemp = {𝑝temp,𝑖 (𝑥, 𝑦) , 1 ≤ 𝑖 ≤ 𝑁𝑝temp
} ,

𝐷temp = {dtemp,𝑖 (𝑥, 𝑦) , 1 ≤ 𝑖 ≤ 𝑁𝑝temp
} ,

(10)

where 𝑝temp,𝑖 stands for the 𝑖th SURF keypoint in 𝐼target and
d
𝑖
is the SURF descriptor of 𝑖th SURF keypoint. As the AR

camera is turned on and being prepared for AR visualization,
from each frame 𝐼cam, which is the image captured by

the AR camera, another set of SURF keypoints pcam with
𝑁pcam points are extracted and denoted as

pcam = {𝑝cam,𝑗 (𝑥, 𝑦) , 1 ≤ 𝑗 ≤ 𝑁𝑝cam} ,

𝐷cam = {dcam,𝑗 (𝑥, 𝑦) , 1 ≤ 𝑗 ≤ 𝑁𝑝cam} .
(11)

For each SURF keypoint 𝑝cam,𝑖 in 𝐼cam, it is compared to
every SURF keypoint 𝑝temp in 𝐼target by calculating 𝐿2-norm
distance of their descriptors dtemp,𝑖 and dcam,𝑗:

𝐸
𝑖,𝑗
=
󵄩󵄩󵄩󵄩󵄩
dtemp,𝑖 − dcam,𝑗

󵄩󵄩󵄩󵄩󵄩2
. (12)

A matching pair is selected if the 𝐿
2
-norm distance between

the descriptors is smaller than 0.7 times of the distance
to the second-nearest keypoint. Assuming the number of
successful corresponding pairs is 𝑁

𝑐
, then if 𝑁

𝑐
is greater

than a predefined threshold 𝜏, it implies that the target object
is probability in the FOV of the AR camera and the system
then moves to the next image-matching step. Otherwise, the
previous process continuously repeats until the criteria ismet;
that is,𝑁

𝑐
> 𝜏.

4. Experimental Results

The proposed markerless AR scheme is based on a Stereo
Video See-Through HMD device, a Vuzix Wrap 1200DXAR,
as show in Figure 5(a). Since this work is aimed for an
AR visualization of medical application, a plastic dummy
head is chosen as target object for AR visualization. The
computed tomography image of the dummy head is obtained
to construct the virtual object for visualization, as show in
Figure 5(b).
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(a) (b)

Figure 5: (a) Vuzix Wrap 1200DXAR Stereo HMD and (b) reconstructed CT model of the dummy head.

(a) (b) (c)

Figure 6: Tools used to evaluate the accuracy of spatial alignment of medical information: (a) plastic dummy head, (b) MicroScribe G2X
digitizer, and (c) triangular prism for coordinate system calibration.

The proposed medical AR system has two unique fea-
tures: one is a marker-free image-to-patient registration and
the other is a pattern-less AR visualization. In this section,
experiments were carried out to evaluate the performance
with respect to these features. At first, the accuracy of the
medical information alignment is evaluated in Section 4.1. In
Section 4.2, visualization result of the proposed AR scheme is
shown.

4.1. Accuracy Evaluation of Alignment. In order to evaluate
the accuracy of the image-to-patient registration of the
proposed system, a plastic dummy head was utilized as the
phantom target object. Before scanning CT images of the
phantom, five skin markers were attached on the face of the
phantom, as shown in Figure 6(a). Since the locations of these
skin markers could easily be identified in the CT images,
these markers were considered as the reference to evaluate
the accuracy of registration. A commercial 3D digitizer,
G2X produced by Microscribe [41], as shown in Figure 6(b),
was utilized to establish the reference coordinate system
and estimate the location of the markers in the physical

space. According to its specification, the accuracy of G2X is
0.23mm,which is suitable for locating the coordinates of skin
markers as the ground truth for evaluation.

Before the evaluation, a calibration step was performed
to find the transformation Digi

W𝑇 between the stereo 3D
coordinate system, that is, the world coordinate system, and
the digitizer’s coordinate system 𝐶Digi. In order to perform
the calibration, a triangular prism with chessboard patterns
attached is used, as shown in Figure 6(c). This prism was
placed in the FOV of the stereo HMD. Corner points of the
chessboard were selected by the digitizer to be reconstructed
by the stereo camera. The two sets of 3D points, represented
by the coordinate systems of the digitizer and the stereo
HMD, respectively, were used to estimate a transformation
Digi
W𝑇 by using least mean square (LMS) method, so that the

3D points reconstructed by stereo camera can be transformed
to the digitizer’s coordinate system 𝐶Digi.

The plastic dummy head was placed in front of the FOV
of the stereo camera at a 60 cm distance. First, we used
the G2X digitizer to obtain the 3D coordinates of these
markers. Next, the stereo camera was utilized to reconstruct
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Figure 7: Result of spatial alignment between feature point cloud and virtual object surface from CT.

Table 1: Target registration error of each skin-attached marker after using various alignment methods.

Target 1 Target 2 Target 3 Target 4 Target 5 Average
MeanTRE (mm)
using Adaptive-ICP [37] 9.35 5.73 4.79 8.38 7.78 7.20

MeanTRE (mm)
using Random-ICP [38] 9.87 5.82 5.15 8.88 8.24 7.59

MeanTRE (mm)
using Fast-MICP [39] 4.51 5.13 3.56 1.57 1.66 3.28

MeanTRE (mm)
using improved ICP 3.47 2.22 3.06 3.55 3.77 3.21

the head’s feature point cloud. Next, another surface is
extracted from the CT image of the dummy head. The point
cloud was transformed to the 𝐶Digi by applying Digi

W𝑇 and
then registered to the preoperative CT images by using the
improved ICP algorithm. Image-to-patient registration is
evaluated by calculating the target registration error (TRE)
[42, 43] of the five skin markers. The TRE for evaluation is
defined as

TRE = 𝑀CT,𝑖 −
MI
W𝑇 (𝑀face,𝑖) , (13)

where𝑀CT,𝑖 denotes the coordinate of the 𝑖th marker in the
CT coordinate system and𝑀face,𝑖 is the coordinate of the 𝑖th
marker in 𝐶Digi. The transformation MI

W𝑇 represents the rigid
transformation obtained from the improved ICP algorithm.
Figure 7 shows the result of spatial alignment between feature
point cloud and the virtual object surface from CT; the
initial spatial position of the reconstructed facial surface
data (white) and CT surface data (magenta). The alignment

procedure was performed repeatedly 100 times, and each
time we slightly shifted the location and orientation of the
phantom. The TREs at each registration procedure were
recorded and the means and the average errors are shown
in Table 1. To demonstrate the performance of the improved
ICP algorithm, three variants of ICP methods, for example,
Adaptive-ICP [37], Random-ICP [38], and Fast-MICP [39],
are used for accuracy comparison. From the experimental
results, it is noted that the TREs using Adaptive-ICP and
Random-ICP are large because no good initial values are
given. For Fast-MICP, good initial condition is needed such
that the registration error can be reduced. On the other
hand, a good initial condition is not required in our case
because the proposed improved ICP algorithm can still
obtain good results by efficient error-minimization strategy.
As shown in Table 1, the mean TREs of the skin markers
using the proposed method are within the range of 2 to
4mm. On a personal computer with an Intel Core 2 Duo
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(a) (b)

Figure 8: Augmented reality visualization results of the proposed medical AR system using the plastic phantom head as testing subject.
(a) First row: original stereo images view, second row: AR visualization result. (b) AR visualization results in another view.

CPU 2.93GHzCPU with 2GBRAM, the processing frame
rate reached 30 frames/s.

4.2. Markerless AR Visualization Results. The proposed AR
system was tested on a plastic dummy head. In the case of
the dummy head, a 3D structure of the dummy head’s CT
image is reconstructed. The outer surface of the 3D structure
is extracted to build the virtual object for AR rendering,
as show in Figure 5(b). The AR visualization results from
different viewpoints are shown in Figure 8. The CT model
is well aligned to the position of dummy head. When the
camera starts moving, markerless AR scheme is applied to
both stereo image, and the extrinsic parameters of the two
cameras are estimated frame by frame. The CT model of the
dummy head is rendered in both stereo camera views.

4.3. Accuracy Evaluation of Camera Extrinsic Parameters
Estimation. For an AR system, the accuracy of the extrinsic
parameter estimation of the AR camera is themost important
thing. In order to evaluate the AR visualization part of the
proposed system, an optical tracking device, the PolarisVicra,
produced by Northen Digital Inc., was utilized to evaluate
the extrinsic parameter estimation results of the proposed
system. The Polaris Vicra is an optical spatial localization
apparatus, which can detect infrared reflective balls by using a
pair of infrared cameras. Since the reflective balls are fixed on
a cross-type device, called dynamic reference frame (DRF),
the posture and position of the DRF can thus be obtained.
The DRF was attached to the HMD in order to track the
AR camera by using the Polaris Vicra sensor. According to
the specification of this product, the localization error of the
Polaris Vicra is smaller than 1mm. Therefore, the posture
and position of the AR camera estimated by the Polaris
Vicra are considered as the comparative reference to evaluate
the accuracy of the proposed patternless AR system. In this
experiment, we have evaluated the proposed patternless AR

Table 2: Accuracy in each degree of freedom.

Degrees of freedom Mean error Standard deviation
Rotation in 𝑥 direction 3.33 degrees 1.38
Rotation in 𝑦 direction 2.31 degrees 1.52
Rotation in 𝑧 direction 0.72 degrees 0.46
Translation in 𝑥 direction 6.11mm 4.27
Translation in 𝑦 direction 5.96mm 3.59
Translation in 𝑧 direction 4.78mm 3.55

system by comparing results against the estimation results
obtained by the Polaris Vicra.

In this experiment, the extrinsic parameters of the HMD
camera estimated by the proposed system were compared
to the results estimated by the Polaris Vicra in 450 frames.
The differences for each of the six degrees of freedom were
measured. The tracking results of the Polaris Vicra are con-
sidered as the ground truth for comparison. Figure 9 shows
the evaluation results for rotation and Figure 10 shows the
evaluation results for translation. The blue curves represent
the estimation results of the proposed system, and the red
curves are the results estimated by the PolarisVicra.Themean
errors of each degree of freedom are shown in Table 2.

5. Conclusion

In traditional AR camera localization methods, a known
pattern must be placed within the FOV of the AR camera for
the purpose of estimating extrinsic parameters of the camera.
In this study, the shortcomings of the traditional methods are
improved. Amarkerless AR visualization scheme is proposed
by utilizing a stereo camera pair to construct the surface data
of the target, and an improved ICP based surface registration
technique is performed to align the preoperative medical
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Figure 9: Accuracy evaluation results of rotation estimation compared to the result of tracking device Polaris Vicra (rotation): (a) roll,
(b) pitch, and (c) yaw.

image model to the real position of the patient. A RANSAC-
based correction is integrated to solve the problem of the
AR camera location without using any pattern, and the
experimental results demonstrate that the proposed approach
provides an accurate, stable, and smooth AR visualization.

Compared to conventional pattern-based AR systems,
the proposed system uses only nature features to estimate
the extrinsic parameters of the AR camera. As a result,
it is more convenient and practical because the FOV of
the AR camera is not limited by the requirement of the
visibility of the AR pattern. A RANSAC-based correction
technique is used to improve the robustness of the extrinsic
parameter estimation of theAR camera.Theproposed system
has been evaluated on both image-to-patient registration
and AR camera localization with a plastic dummy head.
The system has since been tested on a human subject and
showed promising AR visualization results. In the future,
extensive clinical trials are expected for further investigation.

Furthermore, the medical AR environment is expected to be
integrated to an image-guided navigation system for surgical
applications.
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