153 research outputs found

    Dynamic Server Allocation over Time Varying Channels with Switchover Delay

    Get PDF
    We consider a dynamic server allocation problem over parallel queues with randomly varying connectivity and server switchover delay between the queues. At each time slot the server decides either to stay with the current queue or switch to another queue based on the current connectivity and the queue length information. Switchover delay occurs in many telecommunications applications and is a new modeling component of this problem that has not been previously addressed. We show that the simultaneous presence of randomly varying connectivity and switchover delay changes the system stability region and the structure of optimal policies. In the first part of the paper, we consider a system of two parallel queues, and develop a novel approach to explicitly characterize the stability region of the system using state-action frequencies which are stationary solutions to a Markov Decision Process (MDP) formulation. We then develop a frame-based dynamic control (FBDC) policy, based on the state-action frequencies, and show that it is throughput-optimal asymptotically in the frame length. The FBDC policy is applicable to a broad class of network control systems and provides a new framework for developing throughput-optimal network control policies using state-action frequencies. Furthermore, we develop simple Myopic policies that provably achieve more than 90% of the stability region. In the second part of the paper, we extend our results to systems with an arbitrary but finite number of queues.Comment: 38 Pages, 18 figures. arXiv admin note: substantial text overlap with arXiv:1008.234

    On the highly stable performance of loss-free optical burst switching networks

    Get PDF
    Increase of bandwidth demand in data networks, driven by the continuous growth of the Internet and the increase of bandwidth greedy applications, raise the issue of how to support all the bandwidth requirements in the near future. Three optical switching paradigms have been defined and are being investigated: Optical Circuit Switching (OCS); Optical Packet Switching (OPS); and Optical Burst Switching (OBS). Among these paradigms, OBS is seen as the most appropriate solution today. However, OBS suffers from high burst loss as a result of contention in the bufferless mode of operation. This issue was investigated by Coutelen et al., 2009 who proposed the loss-free CAROBS framework whereby signal convertors of the optical signal to the electrical domain ensure electrical buffering. Convertors increase the network price which must be minimized to reduce the installation and operating costs of the CAROBS framework. An analysis capturing convertor requirements, with respect to the number of merging flows and CAROBS node offered load, was carried out. We demonstrated the convertor location significance, which led to an additional investigation of the shared wavelength convertors scenario. Shared wavelength convertors significantly decrease the number of required convertors and show great promise for CAROBS. Based on this study we can design a CAROBS network to contain a combination of simple and complex nodes that include none or some convertors respectively, a vital feature of network throughput efficiency and cost

    Actes du 11ùme Atelier en Évaluation de Performances

    Get PDF
    International audienceLe prĂ©sent document contient les actes du 11Ăšme Atelier en Évaluation des Performances qui s'est tenu les 15-17 Mars 2016 au LAAS-CNRS, Toulouse. L’Atelier en Évaluation de Performances est une rĂ©union destinĂ©e Ă  faire s’exprimer et se rencontrer les jeunes chercheurs (doctorants et postdoctorants) dans le domaine de la ModĂ©lisation et de l’Évaluation de Performances, une discipline consacrĂ©e Ă  l’étude et l’optimisation de systĂšmes dynamiques stochastiques et/ou temporisĂ©s apparaissant en Informatique, TĂ©lĂ©communications, Productique et Robotique entre autres. La prĂ©sentation informelle de travaux, mĂȘme en cours, y est encouragĂ©e afin de renforcer les interactions entre jeunes chercheurs et prĂ©parer des soumissions de nouveaux projets scientifiques. Des exposĂ©s de synthĂšse sur des domaines de recherche d’actualitĂ©, donnĂ©s par des chercheurs confirmĂ©s du domaine renforcent la partie formation de l’atelier

    Autonomous adaptive acoustic relay positioning

    Get PDF
    Thesis: S.M., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 75-79).We consider the problem of maximizing underwater acoustic data transmission by adaptively positioning an autonomous mobile relay so as to learn and exploit spatial variations in channel performance. The acoustic channel is the main practical method of underwater wireless communication and improving channel throughput and reliability is key to improving the capabilities of underwater vehicles. Predicting the performance of the acoustic channel in the shallow-water environment is challenging and usually requires extensive modeling of the environment. However, a mobile relay can learn about the unknown channel as it transmits. The relay must balance searching unknown sites to gain more information, which may pay off in the future, and exploiting already-visited sites for immediate reward. This is a classic exploration vs. exploitation problem that is well-described by a multi-armed bandit formulation with an elegant solution in the form of Gittins indices. For an autonomous ocean vehicle traveling between distant waypoints, however, switching costs are significant. The multi-armed bandit with switching costs has no optimal index policy, so we have developed an adaptation of the Gittins index rule with limited policy enumeration and asymptotic performance bounds. We describe extensive shallow-water field experiments conducted in the Charles River (Boston, MA) with autonomous surface vehicles and acoustic modems, and use the field data to assess performance of the MAB decision policies and comparable heuristics. We find the switching-costs-aware algorithm offers superior real-time performance in decision-making and efficient learning of the unknown field.by Mei Yi Cheung.S.M

    Automatic detection of long-duration transients in Fermi-GBM data

    Full text link
    In the era of time-domain, multi-messenger astronomy, the detection of transient events on the high-energy electromagnetic sky has become more important than ever. Previous attempts to systematically search for onboard-untriggered events in the data of Fermi-GBM have been limited to short-duration signals with variability time scales smaller than ~1 min due to the dominance of background variations on longer timescales. In this study, we aim at the detection of slowly rising or long-duration transient events with high sensitivity and full coverage of the GBM spectrum. We make use of our earlier developed physical background model, propose a novel trigger algorithm with a fully automatic data analysis pipeline. The results from extensive simulations demonstrate that the developed trigger algorithm is sensitive down to sub-Crab intensities, and has a near-optimal detection performance. During a two month test run on real Fermi-GBM data, the pipeline detected more than 300 untriggered transient signals. For one of these transient detections we verify that it originated from a known astrophysical source, namely the Vela X-1 pulsar, showing pulsed emission for more than seven hours. More generally, this method enables a systematic search for weak and/or long-duration transients

    Scheduling algorithms for throughput maximization in data networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2007.Includes bibliographical references (p. 215-226).This thesis considers the performance implications of throughput optimal scheduling in physically and computationally constrained data networks. We study optical networks, packet switches, and wireless networks, each of which has an assortment of features and constraints that challenge the design decisions of network architects. In this work, each of these network settings are subsumed under a canonical model and scheduling framework. Tools of queueing analysis are used to evaluate network throughput properties, and demonstrate throughput optimality of scheduling and routing algorithms under stochastic traffic. Techniques of graph theory are used to study network topologies having desirable throughput properties. Combinatorial algorithms are proposed for efficient resource allocation. In the optical network setting, the key enabling technology is wavelength division multiplexing (WDM), which allows each optical fiber link to simultaneously carry a large number of independent data streams at high rate. To take advantage of this high data processing potential, engineers and physicists have developed numerous technologies, including wavelength converters, optical switches, and tunable transceivers.(cont.) While the functionality provided by these devices is of great importance in capitalizing upon the WDM resources, a major challenge exists in determining how to configure these devices to operate efficiently under time-varying data traffic. In the WDM setting, we make two main contributions. First, we develop throughput optimal joint WDM reconfiguration and electronic-layer routing algorithms, based on maxweight scheduling. To mitigate the service disruption associated with WDM reconfiguration, our algorithms make decisions at frame intervals. Second, we develop analytic tools to quantify the maximum throughput achievable in general network settings. Our approach is to characterize several geometric features of the maximum region of arrival rates that can be supported in the network. In the packet switch setting, we observe through numerical simulation the attractive throughput properties of a simple maximal weight scheduler. Subsequently, we consider small switches, and analytically demonstrate the attractive throughput properties achievable using maximal weight scheduling. We demonstrate that such throughput properties may not be sustained in larger switches.(cont.) In the wireless network setting, mesh networking is a promising technology for achieving connectivity in local and metropolitan area networks. Wireless access points and base stations adhering to the IEEE 802.11 wireless networking standard can be bought off the shelf at little cost, and can be configured to access the Internet in minutes. With ubiquitous low-cost Internet access perceived to be of tremendous societal value, such technology is naturally garnering strong interest. Enabling such wireless technology is thus of great importance. An important challenge in enabling mesh networks, and many other wireless network applications, results from the fact that wireless transmission is achieved by broadcasting signals through the air, which has the potential for interfering with other parts of the network. Furthermore, the scarcity of wireless transmission resources implies that link activation and packet routing should be effected using simple distributed algorithms. We make three main contributions in the wireless setting. First, we determine graph classes under which simple, distributed, maximal weight schedulers achieve throughput optimality.(cont.) Second, we use this acquired knowledge of graph classes to develop combinatorial algorithms, based on matroids, for allocating channels to wireless links, such that each channel can achieve maximum throughput using simple distributed schedulers. Third, we determine new conditions under which distributed algorithms for joint link activation and routing achieve throughput optimality.by Andrew Brzezinski.Ph.D

    Scheduling algorithms for throughput maximization in time-varying networks with reconfiguration delays

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 247-258).We consider the control of possibly time-varying wireless networks under reconfiguration delays. Reconfiguration delay is the time it takes to switch network resources from one subset of nodes to another and it is a widespread phenomenon observed in many practical systems. Optimal control of networks has been studied to a great extent in the literature, however, the significant effects of reconfiguration delays received limited attention. Moreover, simultaneous presence of time-varying channels and reconfiguration delays has never been considered and we show that it impacts the system fundamentally. We first consider a Delay Tolerant Network model where data messages arriving randomly in time and space are collected by mobile collectors. In this setting reconfiguration delays correspond to travel times of collectors. We utilize a combination of wireless transmission and controlled mobility to improve the system delay scaling with load [rho] from [theta](1/(1-[rho])ÂČ) to [theta](1/1-[rho]), where the former is the delay for the corresponding system without wireless transmission. We propose control algorithms that stabilize the system whenever possible and have optimal delay scaling. Next, we consider a general queuing network model under reconfiguration delays and interference constraints which includes wireless, satellite and optical networks as special cases. We characterize the impacts of reconfiguration delays on system stability and delay, and propose scheduling algorithms that persist with service schedules for durations of time based on queue lengths to minimize negative impacts of reconfiguration delays. These algorithms provide throughput-optimality without requiring knowledge of arrival rates since they dynamically adapt inter-switching durations to stochastic arrivals. Finally, we present optimal scheduling under time-varying channels and reconfiguration delays, which is the main contribution of this thesis. We show that under the simultaneous presence of these two phenomenon network stability region shrinks, previously suggested policies are unstable, and new algorithmic approaches are necessary. We propose techniques based on state-action frequencies of Markov Decision Process theory to characterize the network stability region and propose throughput-optimal algorithms. The state-action frequency technique is applicable to a broad class of systems with or without reconfiguration delays, and provides a new framework for characterizing network stability region and developing throughput-optimal scheduling policies.by GĂŒner DincÌŠer CÌŠelik.Ph.D

    Optical architectures for high performance switching and routing

    Get PDF
    This thesis investigates optical interconnection networks for high performance switching and routing. Two main topics are studied. The ïŹrst topic regards the use of silicon microring resonators for short reach optical interconnects. Photonic technologies can help to overcome the intrinsic limitations of electronics when used in interconnects, short-distance transmissions and switching operations. This thesis considers the peculiarasymmetric losses of microring resonators since they pose unprecedented challenges for the design of the architecture and for the routing algorithms. It presents new interconnection architectures, proposes modiïŹcations on classical routing algorithms and achieves a better performance in terms of fabric complexity and scalability with respect to the state of the art. Subsequently, this thesis considers wavelength dimension capabilities of microring resonators in which wavelength reuse (i.e. crosstalk accumulation) presents impairments on the system performance. To this aim, it presents different crosstalk reduction techniques, a feasibility analysis for the design of microring resonators and a novel wavelength-agile routing matrix. The second topic regards ïŹ‚exible resource allocation with adaptable infrastructure for elastic optical networks. In particular, it focus on Architecture on Demand (AoD), whereby optical node architectures can be reconïŹgured on the ïŹ‚y according to trafïŹc requirements. This thesis includes results on the ïŹrst ïŹ‚exible-grid optical spectrum networking ïŹeld trial, carried out in a collaboration with University of Essex. Finally, it addresses several challenges that present the novel concept AoD by means of modeling and simulation. This thesis proposes an algorithm to perform automatic architecture synthesis, reports AoD scalability and power consumption results working under the proposed synthesis algorithm. Such results validate AoD as a ïŹ‚exible node concept that provides power efïŹciency and high switching capacity
    • 

    corecore