115 research outputs found

    Uncertainty damping in kinetic traffic models by driver-assist controls

    Get PDF
    In this paper, we propose a kinetic model of traffic flow with uncertain binary interactions, which explains the scattering of the fundamental diagram in terms of the macroscopic variability of aggregate quantities, such as the mean speed and the flux of the vehicles, produced by the microscopic uncertainty. Moreover, we design control strategies at the level of the microscopic interactions among the vehicles, by which we prove that it is possible to dampen the propagation of such an uncertainty across the scales. Our analytical and numerical results suggest that the aggregate traffic flow may be made more ordered, hence predictable, by implementing such control protocols in driver-assist vehicles. Remarkably, they also provide a precise relationship between a measure of the macroscopic damping of the uncertainty and the penetration rate of the driver-assist technology in the traffic stream

    Asymptotic-preserving exponential methods for the quantum Boltzmann equation with high-order accuracy

    Get PDF
    In this paper we develop high-order asymptotic-preserving methods for the spatially inhomogeneous quantum Boltzmann equation. We follow the work in Li and Pareschi, where asymptotic preserving exponential Runge-Kutta methods for the classical inhomogeneous Boltzmann equation were constructed. A major difficulty here is related to the non Gaussian steady states characterizing the quantum kinetic behavior. We show that the proposed schemes work with high-order accuracy uniformly in time for all Planck constants ranging from classical regime to quantum regime, and all Knudsen numbers ranging from kinetic regime to fluid regime. Computational results are presented for both Bose gas and Fermi gas

    Mini-Workshop: Innovative Trends in the Numerical Analysis and Simulation of Kinetic Equations

    Get PDF
    In multiscale modeling hierarchy, kinetic theory plays a vital role in connecting microscopic Newtonian mechanics and macroscopic continuum mechanics. As computing power grows, numerical simulation of kinetic equations has become possible and undergone rapid development over the past decade. Yet the unique challenges arising in these equations, such as highdimensionality, multiple scales, random inputs, positivity, entropy dissipation, etc., call for new advances of numerical methods. This mini-workshop brought together both senior and junior researchers working on various fastpaced growing numerical aspects of kinetic equations. The topics include, but were not limited to, uncertainty quantification, structure-preserving methods, phase transitions, asymptotic-preserving schemes, and fast methods for kinetic equations

    Kinetic models of BGK type and their numerical integration

    Get PDF
    This minicourse contains a description of recent results on the modelling of rarefied gases in weakly non equilibrium regimes, and the numerical methods used to approximate the resulting equations. Therefore this work focuses on BGK type approximations, rather than on full Boltzmann models. Within this framework, models for polyatomic gases and for mixtures will be considered. We will also address numerical issues characteristic of the difficulties one encounters when integrating kinetic equations. In particular, we will consider asymptotic preserving schemes, which are designed to approximate equilibrium solutions, without resolving the fast scales of the approach to equilibrium.Comment: Lecture notes for the 9th summer school Methods And Models Of Kinetic Theory, M&MKT 201

    A fast iterative scheme for the linearized Boltzmann equation

    Get PDF
    An iterative scheme can be used to find a steady-state solution to the Boltzmann equation, however, it is very slow to converge in the near-continuum flow regime. In this paper, a synthetic iterative scheme is developed to speed up the solution of the linearized Boltzmann equation. The velocity distribution function is first solved by the conventional iterative scheme, then it is corrected such that the macroscopic flow velocity is governed by a diffusion equation which is asymptotic-preserving in the Navier-Stokes limit. The efficiency of the new scheme is verified by calculating the eigenvalue of the iteration, as well as solving for Poiseuille and thermal transpiration flows. The synthetic iterative scheme is significantly faster than the conventional iterative scheme in both the transition and the near-continuum flow regimes. Moreover, due to the asymptotic-preserving properties, the SIS needs less spatial resolution in the near-continuum flow regimes, which makes it even faster than the conventional iterative scheme. Using this synthetic iterative scheme, and the fast spectral approximation of the linearized Boltzmann collision operator, Poiseuille and thermal transpiration flows between two parallel plates, through channels of circular/rectangular cross sections, and various porous media are calculated over the whole range of gas rarefaction. Finally, the flow of a Ne-Ar gas mixture is solved based on the linearized Boltzmann equation with the Lennard-Jones potential for the first time, and the difference between these results and those using hard-sphere intermolecular potential is discussed.Comment: 13 figs, 5 table
    corecore