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Iterative schemes to find steady-state solutions to the Boltzmann equation are efficient 
for highly rarefied gas flows, but can be very slow to converge in the near-continuum 
flow regime. In this paper, a synthetic iterative scheme is developed to speed up the 
solution of the linearized Boltzmann equation by penalizing the collision operator L into 
the form L = (L + Nδh) − Nδh, where δ is the gas rarefaction parameter, h is the velocity 
distribution function, and N is a tuning parameter controlling the convergence rate. The 
velocity distribution function is first solved by the conventional iterative scheme, then 
it is corrected such that the macroscopic flow velocity is governed by a diffusion-type 
equation that is asymptotic-preserving into the Navier–Stokes limit. The efficiency of this 
new scheme is assessed by calculating the eigenvalue of the iteration, as well as solving 
for Poiseuille and thermal transpiration flows. We find that the fastest convergence of 
our synthetic scheme for the linearized Boltzmann equation is achieved when Nδ is close 
to the average collision frequency. The synthetic iterative scheme is significantly faster 
than the conventional iterative scheme in both the transition and the near-continuum gas 
flow regimes. Moreover, due to its asymptotic-preserving properties, the synthetic iterative 
scheme does not need high spatial resolution in the near-continuum flow regime, which 
makes it even faster than the conventional iterative scheme. Using this synthetic scheme, 
with the fast spectral approximation of the linearized Boltzmann collision operator, 
Poiseuille and thermal transpiration flows between two parallel plates, through channels 
of circular/rectangular cross sections and various porous media are calculated over the 
whole range of gas rarefaction. Finally, the flow of a Ne–Ar gas mixture is solved based 
on the linearized Boltzmann equation with the Lennard–Jones intermolecular potential for 
the first time, and the difference between these results and those using the hard-sphere 
potential is discussed.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The Boltzmann equation is fundamental to a broad range of applications from aerodynamics to microfluidics [1], and it 
is important to be able to solve it accurately and efficiently. Most often, the Boltzmann equation is solved by the stochastic 
Direct Simulation Monte Carlo (DSMC) technique, which uses a number of simulated particles to mimic the binary collisions 
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and streaming of very large numbers of gas molecules [2]. In DSMC, the length of the spatial cell and the time step need 
to be smaller than the local molecular mean free path and the mean collision time, respectively, and for this reason the 
technique becomes very slow and costly for near-continuum flows. Although time-relaxed and asymptotic-preserving Monte 
Carlo methods allow larger time steps [3,4], the restriction on the size of the spatial cells has not yet been removed. The 
same problem, in fact, exists in deterministic numerical methods for the Boltzmann equation, where the streaming and the 
collisions are treated separately in the splitting scheme [5,6].

The unified gas-kinetic scheme (UGKS) provides an alternative approach. It was first developed for the Bhatnagar–Gross–
Krook (BGK) kinetic model [7,8], then for the Shakhov model [9,10], and finally generalized to the Boltzmann equation [11]. 
It handles the streaming and binary collisions simultaneously so that, for time-dependent problems, the time step is only 
limited by the Courant–Friedrichs–Lewy condition. Also, the UGKS is asymptotic-preserving into the Navier–Stokes limit [12], 
so the length of the spatial cells can be significantly larger than the molecular mean free path. Moreover, the UGKS is a 
finite volume method, and the analytical integral solution of the BGK-type model enables accurate flux evaluation at the cell 
interface, so that the essential flow physics can be captured even with the coarse grids. These advanced properties make 
the UGKS (and its improved version: the discrete UGKS [13,14]) a multiscale method for efficient and accurate calculations 
of rarefied gas flows over a wide range of the gas rarefaction. Recently, an implicit UGKS has been proposed to eliminate 
the time step limitation and further improve the numerical efficiency [15].

To find a steady-state solution to the Boltzmann equation, an iterative scheme is often used. In the free-molecular 
flow regime, where binary collisions are negligible, an iterative scheme is efficient, because the gas molecules move in 
straight way (except the collision with wall surfaces) so that any disturbance at one point can be quickly felt by all other 
points. However, for near-continuum flows the iterations converge slowly and the results are very likely to be biased by 
accumulated rounding errors. Although the time and spatial steps can be large, the UGKS still needs a large number of 
iterations [15]. This is governed by the underlying physics: the exchange of information through streaming becomes very 
inefficient when binary collisions dominate. Therefore, it would be useful to develop an efficient numerical scheme to solve 
the Boltzmann equation that both has the asymptotic-preserving property in the Navier–Stokes limit (like the UGKS where 
the spatial resolution can be coarse) and converges to the steady-state rapidly.

Inspired by work on fast iterative methods for radiation transport processes [16], accelerated iterative schemes have 
been developed for the linearized BGK and Shahkov models [17] to overcome slow convergence in the near-continuum 
flow regime. The fast iterative scheme is called a “synthetic iterative scheme” (SIS) since kinetic model equations are solved 
in parallel with diffusion-type equations for macroscopic quantities such as the flow velocity and heat flux. The SIS has 
been successfully applied to Poiseuille flow in channels with two-dimensional cross sections of arbitrary shapes [18] using 
a BGK model for single-species gases, and flows of binary and ternary gas mixtures driven by local pressure, temperature, 
and concentration gradients [19–21,18,22–24] using the McCormack model [25]. The fast convergence of the SIS is due to 
three factors: first, the macroscopic synthetic diffusion-type equations exchange the information very efficiently; second, 
the macroscopic flow quantities can be fed back into mesoscopic kinetic models; and third, macroscopic diffusion-type 
equations are solved more quickly than mesoscopic kinetic model equations.

In the present paper we develop a SIS to solve the linearized Boltzmann equation (LBE) for Poiseuille and thermal tran-
spiration flows. Although for the single-species LBE these canonical flows have been extensively studied for hard-sphere [26,
27], inverse power-law [28], and even Lennard–Jones [29,30] potentials, numerical results for near-continuum flows are 
scarce. Moreover, for gas mixtures these flows have only been solved based on the hard-sphere model in a one-dimensional 
geometry [31]. We will calculate these flows through two-dimensional cross sections of arbitrary shape, and investigate the 
influence of realistic intermolecular potentials for gas mixtures. The core methods we adopt are (i) the SIS originally de-
veloped for kinetic model equations, which is introduced in the previous paragraph, (ii) the penalization method [6,32,33], 
which makes the development of SIS for the LBE possible, and (iii) the fast spectral method, developed by Mouhot and 
Pareschi [34] and extended by us to gas mixtures and Lennard–Jones potentials [35,30], which enables the efficient and 
accurate computation of the linearized Boltzmann collision operator.

The rest of this paper is organized as follows. In Sec. 2, we briefly introduce the LBE for single-species gases and the 
conventional iterative scheme (CIS). Then, by analyzing the SIS for the BGK model, we develop a SIS for the LBE and test 
its performance by calculating both the eigenvalues of iterations and Poiseuille/thermal transpiration flows. We improve the 
efficiency of the proposed SIS by adjusting a parameter in the scheme, which can be determined prior to the numerical 
simulation. In Sec. 3, the SIS is used to solve rarefied gas flows in multiscale problems. In Sec. 4, the SIS in polar coordinates 
is proposed and numerical results of the LBE for Poiseuille flow through a tube are presented. In Sec. 5, the SIS is extended 
to the LBE for gas mixtures, and Poiseuille flow of a Ne–Ar mixture is solved for the first time based on the Lennard–Jones 
potential. In Sec. 6, we conclude with a summary of the new numerical method and future perspectives.

2. A synthetic scheme for the single-species LBE

Consider the steady flow of a single-species monatomic gas along a channel of arbitrary cross section in the x1–x2
plane, subject to small pressure/temperature gradients in the x3 direction. The velocity distribution function (VDF) can be 
expressed as f = feq + h, where

feq(v) = exp(−|v|2)
3/2

(1)

π
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is the equilibrium VDF and h(x1, x2, v) is the perturbed VDF satisfying |h/ feq| � 1. The LBE for h is:

v1
∂h

∂x1
+ v2

∂h

∂x2
= L(h, feq) + S, (2)

with the linearized Boltzmann collision operator [28]:

L =
¨

B(|v − v∗|, θ)[ feq(v′)h(v′∗) + feq(v′∗)h(v′) − feq(v)h(v∗)]d�dv∗︸ ︷︷ ︸
L+

−νeq(v)h(v). (3)

From Eq. (1) to (3), x = (x1, x2, x3) is the position vector normalized by the characteristic flow length �, v = (v1, v2, v3)

is the molecular velocity vector normalized by the most probable speed vm = √
2kB T0/m (kB is the Boltzmann constant, 

T0 is the gas/wall temperature, and m is the gas molecular mass), B(|v − v∗|, θ) is the collision kernel determined by the 
intermolecular potential [28,30], and

νeq(v) =
¨

B(|v − v∗|, θ) feq(v∗)d�dv∗ (4)

is the equilibrium collision frequency.
Finally, S is the source term:

S =
{ −X P v3 feq, for Poiseuille flow,

−XT v3(|v|2 − 5/2) feq, for thermal transpiration flow,
(5)

where X P and XT are the pressure and temperature gradients, respectively. For the LBE, since macroscopic quantities are 
proportional to X P and XT , we assume X P = XT = −1.

The macroscopic quantities of interest are the flow velocity normalized by the most probable speed:

U3 =
ˆ

v3hdv, (6)

the shear stresses normalized by the equilibrium gas pressure p0:

P13 =
ˆ

2v1v3hdv, P23 =
ˆ

2v2 v3hdv, (7)

and the heat flux normalized by p0 vm:

q3 =
ˆ (

|v|2 − 5/2
)

v3hdv. (8)

The dimensionless mass flow rate M and heat flow rate Q are:

M = 1

A

¨
U3dx1dx2,

Q = 1

A

¨
q3dx1dx2,

(9)

where A is the area of the cross section.
The integro-differential system defined by Eqs. (2) and (3) is usually solved by the CIS. Given the value of h(k) at the k-th 

iteration step, the VDF at the next iteration step is calculated by solving the following equation:

νeqh(k+1) + v1
∂h(k+1)

∂x1
+ v2

∂h(k+1)

∂x2
= L+(h(k), feq) + S, (10)

where derivatives with respect to spatial variables are usually approximated by a second-order upwind finite difference. 
The process is repeated until relative differences between successive estimates of macroscopic quantities are less than a 
convergence criterion ε . The number of iteration steps in CIS increases significantly when the ratio of the molecular mean 
free path to the characteristic flow length decreases, especially when the gas flow is in the near-continuum regime [17], 
see also the data in Table 1 below. It is our goal here to develop a fast iterative scheme to solve the LBE efficiently and 
accurately over the whole range of gas rarefaction.
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2.1. SIS for the BGK equation

To begin with, we introduce the SIS for the BGK equation [17]. The linearized Boltzmann collision operator in Eq. (3) is 
replaced by that of the BGK kinetic model, yielding the following equation for the perturbed VDF h:

v1
∂h

∂x1
+ v2

∂h

∂x2
= δ[2U3 v3 feq − h]︸ ︷︷ ︸

LBG K

+S, (11)

where

δ = p0�

μvm
(12)

is the rarefaction parameter, with μ being the gas shear viscosity.
Multiplying Eq. (11) by the Hermite polynomials and applying the recursion relation, a set of first-order partial differen-

tial equations can be obtained for various orders of moments [36]. Here, two relevant equations for the macroscopic flow 
velocity are listed:

∂U3

∂x1
= −δP13 − 1

4

∂ F2,0,1

∂x1
− 1

4

∂ F1,1,1

∂x2
, (13)

∂U3

∂x2
= −δP23 − 1

4

∂ F1,1,1

∂x1
− 1

4

∂ F0,2,1

∂x2
, (14)

where

Fm,n,l(x1, x2) =
ˆ

h(x1, x2,v)Hm(v1)Hn(v2)Hl(v3)dv (15)

are the non-accelerated high-order moments, with Hn(v) being the n-th order physicists’ Hermite polynomial. The combi-
nation of Eqs. (13) and (14) leads to an equation of diffusion-type for the flow velocity:

∂2U3

∂x2
1

+ ∂2U3

∂x2
2

= −δ

(
∂ P13

∂x1
+ ∂ P23

∂x2

)
− 1

4

(
∂2 F2,0,1

∂x2
1

+ 2
∂2 F1,1,1

∂x1∂x2
+ ∂2 F0,2,1

∂x2
2

)
(16a)

=

⎧⎪⎪⎨
⎪⎪⎩

−δ − 1
4

(
∂2 F2,0,1

∂x2
1

+ 2 ∂2 F1,1,1
∂x1∂x2

+ ∂2 F0,2,1

∂x2
2

)
, Poiseuille,

− 1
4

(
∂2 F2,0,1

∂x2
1

+ 2 ∂2 F1,1,1
∂x1∂x2

+ ∂2 F0,2,1

∂x2
2

)
, thermal transpiration.

(16b)

Note that in obtaining the final equation we have used the relation ∂ P13/∂x1 + ∂ P23/∂x2 = 1 for Poiseuille flow and 
∂ P13/∂x1 + ∂ P23/∂x2 = 0 for thermal transpiration flow. The SIS for the BGK equation then works as follows [17,36]:

• When h(k) and U (k)
3 are known at the k-th iteration step, calculate the VDF h(k+1) by solving the following equation:

δh(k+1) + v1
∂h(k+1)

∂x1
+ v2

∂h(k+1)

∂x2
= 2δU (k)

3 v3 feq + S. (17)

• From h(k+1) , calculate the non-accelerated moments F2,0,1, F1,1,1, and F0,2,1.

• From h(k+1) , calculate the flow velocity U (k+1)
3 near the boundary. However, for the flow velocity in the bulk (i.e. several 

computational layers away from the boundary), U (k+1)
3 is obtained by solving the diffusion-type equation (16b).

The above iterative procedure is continued until convergence. It should be emphasized that the relation ∂ P13/∂x1 +
∂ P23/∂x2 = 1 or 0 for Poiseuille flow or thermal transpiration flow, respectively, is crucial for the fast convergence of the 
SIS. This is because non-accelerated moments are negligible at large values of the rarefaction parameter δ, so the synthetic 
equation (16b) quickly adjusts the flow velocity to the solution of the Navier–Stokes equation,

∂2U3

∂x2
1

+ ∂2U3

∂x2
2

= −δ, for Poiseuille flow,

∂2U3

∂x2
1

+ ∂2U3

∂x2
2

= 0, for thermal transpiration flow,

(18)

which is close to the solution of the linearized BGK equation. If the synthetic equation (16a) is used instead, with P13
and P23 calculated based on the VDF obtained at each iteration step, the slow convergence at large values of δ is not 
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improved because it takes a lot of iterations to reach the condition ∂ P13/∂x1 + ∂ P23/∂x2 = 1 or 0; in the worst-case 
scenario, it may even lead to false convergence and incorrect solutions when the spatial resolution is not high enough. 
However, Eq. (16b) guarantees the correctness of the solution at large values of δ, as it has the asymptotic-preserving 
property in the Navier–Stokes limit [12]. This point will be demonstrated in Sec. 2.6 below.

2.2. SIS for the LBE

The development of a SIS for the LBE is not straightforward, since the collision operator of the LBE is much more 
complicated than that of the linearized BGK model. Directly following the method in Sec. 2.1, the following diffusion-type 
equation for the flow velocity is obtained:

∂2U3

∂x2
1

+ ∂2U3

∂x2
2

= 2
∂

∂x1

ˆ
v1 v3Ldv + 2

∂

∂x2

ˆ
v2 v3Ldv − 1

4

(
∂2 F2,0,1

∂x2
1

+ 2
∂2 F1,1,1

∂x1∂x2
+ ∂2 F0,2,1

∂x2
2

)
, (19)

which, like Eq. (16a), cannot improve the slow convergence at large values of δ.
To speed up the convergence, the relation ∂ P13/∂x1 + ∂ P23/∂x2 = 1 or 0 for Poiseuille flow or thermal transpiration 

flow, respectively, must be reflected in the diffusion-type equation. For instance, as in Eq. (16b), a term similar to −δ should 
appear on the right-hand-side of Eq. (19) for Poiseuille flow. To achieve this, we penalize the linearized Boltzmann collision 
operator by the linearized BGK operator [6], i.e.,

L = (L − LBG K ) + LBG K , (20)

and let

2
ˆ

v1 v3Ldv = 2
ˆ

v1 v3(L − LBG K )dv − δP13,

2
ˆ

v2 v3Ldv = 2
ˆ

v2 v3(L − LBG K )dv − δP23. (21)

This transforms Eq. (19) into

∂2U3

∂x2
1

+ ∂2U3

∂x2
2

= − δ − 1

4

(
∂2 F2,0,1

∂x2
1

+ 2
∂2 F1,1,1

∂x1∂x2
+ ∂2 F0,2,1

∂x2
2

)

+ 2
∂

∂x1

ˆ
v1 v3(L − LBG K )dv + 2

∂

∂x2

ˆ
v2 v3(L − LBG K )dv, (22)

which is very close to Eq. (16b) for the linearized BGK equation. At large values of the rarefaction parameter δ, 
´

(L −
LBG K )v1 v3dv and 

´
(L − LBG K )v2 v3dv approach zero, and Eq. (22) possesses the asymptotic-preserving property in the 

Navier–Stokes limit [12]. Therefore, a SIS can be developed based on this equation. Note that for thermal transpiration flow, 
δ in Eq. (22) should be replaced by zero, as ∂ P13/∂x1 + ∂ P23/∂x2 = 0.

The SIS for the LBE then works as that for the BGK equations, with some changes:

• When h(k) and U (k)
3 are known at the k-th iteration step, we calculate 

´
v1 v3(L − LBG K )dv and 

´
v2 v3(L − LBG K )dv. We 

also calculate the VDF h(k+1/2) by solving the following equation:

νeqh(k+1/2) + v1
∂h(k+1/2)

∂x1
+ v2

∂h(k+1/2)

∂x2
= L+(h(k), feq) + S. (23)

• From h(k+1/2) , we calculate the flow velocity U (k+1/2) , and the non-accelerated moments F2,0,1, F1,1,1, and F0,2,1.

• Near the boundary, we let U (k+1)
3 = U (k+1/2)

3 , while we solve the diffusion-type equation (22) to obtain the flow velocity 
in the bulk.

• A correction of the VDF is introduced in accordance with the changed flow velocity:

h(k+1) = h(k+1/2) + 2(U (k+1)
3 − U (k+1/2)

3 )v3 feq. (24)

• The above steps are repeated until convergence.

Note that for the linearized BGK model [17], Eq. (24) is not necessary because the linearized collision operator at the 
next iterative step automatically changes when the flow velocity is corrected by the diffusion-type equation. In the LBE, 
however, the change of flow velocity does not directly change the collision operator at the next iterative step, so Eq. (24) is 
important.
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Fig. 1. Eigenvalue ω versus the inverse rarefaction parameter 1/δ for different iterative schemes for the LBE with Maxwell and hard-sphere molecules (Note 
that Poiseuille and thermal transpiration flows have the same eigenvalue). Our method to calculate the eigenvalue for the SIS at large values of δ is not 
accurate, since the convergence is so fast (it converges after one iteration) that we have few data to calculate λ through numerical fitting. However, the 
trend that ω in the SIS decreases with 1/δ is clear when 1/δ → 0.

2.3. Numerical analysis of the convergence rate

Analytical solutions for the eigenvalue ω have previously been introduced in order to characterize the convergence rate 
of the iterative scheme for the linearized BGK equation [17,36]. However, this is more difficult for the LBE because of its 
intricate collision operator. Here we calculate the eigenvalue numerically in order to study the performance of both the SIS 
and the CIS. For simplicity, we consider a periodic system of length � in the x1 direction, while the system is homogeneous 
in the x2 direction.

For the CIS described by Eq. (10), the VDF is solved in the following manner (hereafter in this section, h and U3 should 
be viewed as their Fourier transforms in the x1 direction):

h(k+1) = L+(h(k), feq) + S

νeq + 2iπ v1
, i = √−1. (25)

During iteration, the flow velocity U (k+1)
3 = ´

h(k+1)v3dv is recorded, and upon convergence the resultant series of the flow 
velocity is fitted by U3(k) = U3∞ + Ce−λk . The eigenvalue ω is then calculated as ω = e−λ . It is obvious that the smaller ω
is, the faster the convergence; the case of ω = 1 means no convergence.

For the SIS, the VDF is first updated according to Eq. (23):

h(k+1/2) = L+(h(k), feq) + S

νeq + 2iπ v1
. (26)

Then the flow velocity is calculated according to the diffusion-type equation (22) as

U (k+1)
3 =

{
(δ − 2iπ A1 − 4π2 A2)/4π2, Poiseuille,

(−2iπ A1 − 4π2 A2)/4π2, thermal transpiration,
(27)

where A1 = 2 ́ v1 v3(L − LBG K )|h=h(k)dv and A2 = ´
h(k+1/2)(2v2

1 − 1)v3dv. Finally, this flow velocity is used to correct the 
VDF according to Eq. (24): h(k+1) = h(k+1/2) + 2(U (k+1)

3 − U (k+1/2)

3 )v3 feq , where U (k+1/2)

3 = ´
h(k+1/2)v3dv. The calculation of 

the eigenvalue for the SIS then follows in the same way as that for the CIS.
Figure 1 presents the eigenvalues for both the SIS and the CIS. For small values of the rarefaction parameter δ both 

schemes have the same convergence rate. However, for large values of δ, the CIS has extremely slow convergence (ω ≈ 1), 
while the SIS converges much faster. It is also interesting to note that the intermolecular potential greatly affects the 
convergence rate: at the same value of δ, the solution of the LBE for hard-sphere molecules converges faster than that for 
Maxwell molecules,1 in both the SIS and the CIS.

2.4. Numerical results for spatially-inhomogeneous systems

We now present numerical simulations that demonstrate the efficiency and accuracy of the SIS for Poiseuille/thermal 
transpiration flows between infinite parallel plates and through a two-dimensional square channel.

1 We assume the collision kernel B(|v −v∗|, θ) for Maxwell molecules is proportional to 1/
√

sin θ , where θ is the deflection angle during binary collisions, 
see Eq. (2.3) in Ref. [28].
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Table 1
Mass/heat flow rates in the Poiseuille flow of hard-sphere and Maxwell molecules between two parallel plates. Itr denotes the number of iteration steps to 
reach the convergence criterion ε = 10−10. The results for the CIS are not shown at δ = 100 because it is hard to converge.

δ Hard-sphere molecules Maxwell molecules

SIS CIS SIS CIS

Itr M −Q Itr M −Q Itr M −Q Itr M −Q
0.01 9 1.454 0.658 9 1.454 0.658 10 1.352 0.549 10 1.352 0.549
0.05 12 1.098 0.470 12 1.098 0.470 16 1.033 0.398 16 1.033 0.398
0.1 15 0.974 0.398 15 0.974 0.398 20 0.926 0.344 20 0.926 0.344
0.5 32 0.781 0.252 33 0.781 0.252 46 0.767 0.233 48 0.767 0.233
1 40 0.754 0.195 49 0.754 0.195 59 0.751 0.188 71 0.751 0.188
2 49 0.782 0.141 91 0.782 0.141 66 0.789 0.143 137 0.789 0.143
5 54 0.977 0.079 283 0.977 0.079 71 0.992 0.085 431 0.992 0.085
10 54 1.365 0.045 777 1.364 0.045 72 1.383 0.050 1183 1.382 0.050
20 55 2.182 0.024 2432 2.177 0.024 72 2.199 0.027 3684 2.194 0.027
30 54 3.009 0.016 4798 3.000 0.016 71 3.025 0.019 7245 3.017 0.019
50 54 4.671 0.010 12038 4.649 0.010 72 4.686 0.012 18136 4.665 0.012
100 55 8.836 0.005 73 8.848 0.006

We first consider a gas flow between two infinite parallel plates located at x1 = −1/2 and x1 = 1/2 (note that x1 has 
been normalized by the distance between two parallel palates �). Pressure and temperature gradients are applied in the x3
direction only, so the flow is homogeneous in the x2 direction and partial derivatives with respect to x2 can be dropped. 
The discretization of the three-dimensional molecular velocity space, as well as the fast spectral method to solve the lin-
earized Boltzmann collision operator, are given in Ref. [28]. We adopt the diffuse boundary condition for the gas–wall 
interaction. Due to symmetry, only half of the spatial region (−1/2 ≤ x1 ≤ 0) is simulated, with a specular-reflection bound-
ary condition at x1 = 0, and the diffuse boundary condition h(v2 > 0) = 0 at x1 = −1/2. The spatial domain is divided 
into 100 nonuniform sections, with most of the discrete points placed near the wall: x1 = (10 − 15s + 6s2)s3 − 0.5, where 
s = (0, 1, · · · , Ns)/2Ns . The size of the smallest section is 1.24 × 10−6, small enough to capture the Knudsen layer.

For the one-dimensional problem, the shear stress is P13 = x1 for Poiseuille flow and P13 = 0 for thermal transpiration 
flow. The diffusion-type equation (22) is integrated to give the following first-order ordinary differential equation:

∂U3

∂x1
= −δP13 − 1

4

∂ F2,0,1

∂x1
+ 2

ˆ
v1 v3(L − LBG K )dv, (28)

which is solved by a second-order upwind finite difference (with a first-order scheme at the wall), with the boundary 
condition U3(x1 = −1/2) = ´

v3h(x1 = −1/2)dv calculated from the VDF at each iteration. The iterations terminate when the 
relative errors in the mass and heat flow rates (M = 2 ́ 0

−1/2 U3dx1, Q = 2 ́ 0
−1/2 q3dx1) between two consecutive iterations 

are less than ε = 10−10.
A comparison between the SIS and the CIS is tabulated in Table 1 for Poiseuille flow. The relative differences in mass/heat 

flow rates between the two schemes is less than 0.5%, which demonstrates the accuracy of the SIS. The superiority of the 
SIS over the CIS is immediately seen: for the CIS, the number of iteration steps increases rapidly with the rarefaction 
parameter, while for the SIS it only slightly increases with δ in the free-molecular and transition flow regimes and saturates 
in the near-continuum flow regime (δ ≥ 10). Since, compared to the fast spectral approximation to the Boltzmann collision 
operator the time for solving Eq. (28) is negligible, the CPU time saving is proportional to the time-step saving, and this is 
tremendous for the SIS. At δ = 10, the SIS is about 15 times faster than the CIS, while at δ = 50 it is about 220 times faster.

It is interesting to note that for both the SIS and CIS, solutions of the LBE for hard-sphere molecules converge about 1.5 
times faster than for Maxwell molecules, a result which supports the convergence analysis in Sec. 2.3.

We also consider Poiseuille/thermal transpiration flows along a channel of square cross section. Due to symmetry, only 
one quarter of the spatial domain is simulated, which is divided into 50 × 50 non-uniform cells: in each direction, from 
the boundary to the center, the length of each cell side forms a geometric progression with a common ratio 1.05. The 
diffusion-type equation (22) is discretized by a five-point central difference, and solved by the successive-over-relaxation 
method [37]. Table 2 summarizes the numerical results from the SIS. The mass flow rate in thermal transpiration flow is 
not shown, as according to the Onsager–Casimir relation it is equal to the heat flow rate in Poiseuille flow. From this table 
it is seen that our SIS for the LBE works efficiently over the whole range of gas rarefaction.

This efficient SIS can also be used to calculate the slip coefficients. In Ref. [38] it was stated in that the thermal slip 
coefficient is strongly affected by the intermolecular potential. Therefore, we calculate this coefficient based on the LBE for 
hard-sphere and Maxwellian molecules, and compare our results to that of the Shakhov kinetic model [39]. Since in the 
near-continuum regime, the dimensionless mass flow rate in a thermal transpiration flow can be expressed as [40]

MT = 2σT

δ
, (29)

we calculate the thermal slip coefficient as σT = 2δMT by choosing large values of δ.
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Table 2
Mass/heat flow rates in Poiseuille/thermal transpiration flows of hard-sphere and Maxwell molecules along a channel of square cross section, as well as the 
number of iterations (Itr) to reach the convergence criterion ε = 10−10 in the SIS.

δ Hard-sphere molecules Maxwell molecules

Itr MP −QP Itr QT Itr MP −QP Itr QT

0.0 3 0.419 0.210 3 0.944 3 0.419 0.210 3 0.944
0.01 5 0.413 0.205 5 0.924 6 0.411 0.201 5 0.918
0.05 6 0.402 0.194 6 0.882 7 0.398 0.188 8 0.869
0.1 7 0.395 0.186 7 0.847 9 0.391 0.179 9 0.832
0.5 13 0.379 0.153 13 0.695 18 0.378 0.149 21 0.677
1 16 0.382 0.132 18 0.589 19 0.382 0.130 29 0.572
2 24 0.400 0.106 21 0.458 33 0.405 0.108 40 0.443
5 30 0.484 0.068 29 0.275 39 0.494 0.072 48 0.265
10 31 0.644 0.042 31 0.162 40 0.659 0.045 50 0.157
20 32 0.981 0.023 32 0.088 40 1.002 0.026 53 0.086
30 31 1.323 0.016 27 0.061 40 1.349 0.018 52 0.059
50 34 2.011 0.010 33 0.037 44 2.048 0.011 57 0.036
100 40 3.736 0.005 44 0.019 53 3.801 0.006 68 0.018

Table 3
Thermal slip coefficients calculated based on the LBE for the hard-sphere 
and Maxwellian molecules, and the coefficient obtained from the Shakhov 
kinetic model [38].

Hard-sphere Maxwellian Shakhov model

σT 1.010 1.168 1.175

The numerical results are shown in Table 3. It is clear that there is a large difference (nearly 20%) between the LBE for 
the hard-sphere gas and the Shakhov model, but the difference between the LBE for the Maxwellian gas and the Shakhov 
model is small. This is probably because the collision frequencies in the LBE for Maxwellian molecules and the Shakhov 
model are constants, while that in the LBE for hard-sphere molecules is a function of the molecular velocity. This example 
shows that it is necessary to use the Boltzmann equation even in the near-continuum flow regime, and the SIS developed 
here is useful, for example, in assessing the accuracy of various kinetic gas–surface boundary conditions by comparing the 
numerical solutions for thermal transpiration flow with experimental data [41,42].

2.5. The most efficient scheme

In Sec. 2.4 we saw that the SIS for the LBE can be faster than the CIS by several orders of magnitude in the near-
continuum regime. Now we look at the possibility of speeding up the convergence even more, without modifying the SIS 
too much. To this end, we penalize the linearized Boltzmann collision operator into the following form:

L = (L − N LBG K ) + N LBG K , (30)

where the constant N is a tuning parameter which affects the convergence rate.
With Eq. (20) replaced by Eq. (30), the diffusion-type equation (22) should be changed accordingly. Our numerical results 

for Poiseuille flow between two parallel plates show that, for a fixed δ, all synthetic schemes with different values of N
converge to the same solution (with relative errors in flow rates less than 0.1%). However, the convergence rate varies 
with N . From the top row in Fig. 2 we see that in the free molecular regime all schemes have the same convergence rate, 
while in the transition regime the scheme with N < 1 (N > 1) converges slower (faster) than that with N = 1. The situation 
becomes complicated in the near-continuum regime: for hard-sphere molecules, the case with N = 1.5 converges fastest, 
followed by N = 1, 2, and 0.5. For Maxwell molecules, however, the cases with N = 1.5 and N = 2 have roughly the same 
fast convergence, followed by N = 1 and 0.5. Similar behaviors are observed for the thermal transpiration flow.

To further investigate the relationship between the convergence iteration step and N in the synthetic scheme, we fix 
δ = 100 and vary N . The numerical results in the bottom row of Fig. 2 show that the fastest convergence is achieved when 
N is approximately 2 and 1.5 for Maxwell and hard-sphere molecules, respectively. This may be interpreted in terms of 
the average collision frequency. In the LBE, the equilibrium collision frequency νeq is in general a function of the molecular 
velocity. The average collision frequency,

ν̄ =
ˆ

νeq(v) feq(v)dv, (31)

varies between different intermolecular potentials even when the shear viscosity is the same. We found that for Maxwell 
and hard-sphere molecules, the average collision frequencies are 2.22 and 1.25 times larger than the rarefaction parameter, 
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Fig. 2. Top row: iteration number versus the rarefaction parameter δ in the SIS (the convergence criterion is ε = 10−10) for Poiseuille flow between two 
parallel plates. Top left: hard-sphere molecules. Top right: Maxwell molecules. Bottom row: number of iterations to convergence versus N in the SIS when 
the rarefaction parameter is δ = 100.

respectively—which are very close to the two values for the fastest convergence as seen in the bottom row of Fig. 2. 
Therefore, to achieve the best performance of the synthetic scheme we suggest using

N = ν̄

δ
, (32)

which further reduces the iteration number by about 30% when compared to the case of N = 1.

2.6. Further benefit in using SIS

In addition to the significant speed-up of convergence, the SIS can also help to reduce the spatial resolution. It is well-
known that in order to solve the kinetic equations the size of the spatial cells in the traditional discrete velocity method or 
the DSMC method should be smaller than the molecular mean free path, so that numerical results are reliable because the 
artificial viscosity is much smaller than the physical viscosity. In the SIS, the macroscopic flow velocity is obtained by solv-
ing the synthetic diffusion-type equation (22) which is asymptotic-preserving into the Navier–Stokes regime, so the spatial 
resolution can be relatively coarser.

To demonstrate this, we run the test case in Sec. 2.4 again, but the half spatial domain is instead divided into 10 uniform 
cells; for δ = 200, this means that the spatial cell size is about 10 times larger than the molecular mean free path. Both the 
SIS and CIS on this coarse grid are compared to the reference solutions of Table 1. Since the mass flow rate in Poiseuille 
flow increases rapidly with δ, we study how the apparent gas permeability changes with the rarefaction parameter. Here, 
the apparent gas permeability, which is normalized by �2, is defined as

κ = MP

δ
. (33)

Note that according to the Navier–Stokes equation with the no-slip velocity boundary condition, the flow velocity satisfies

∂2U3
2

= −δ, with U3

(
x1 = ±1

)
= 0. (34)
∂x1 2
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Fig. 3. The apparent gas permeability in the Poiseuille flow of a hard-sphere gas between two parallel plates. Solid lines: reference solution obtained from 
Table 1. Squares and triangles: the SIS and CIS solutions, respectively, of the LBE when the half spatial region is divided into 10 uniform sections. Dashed 
lines: the intrinsic permeability κ = 1/12, obtained from the Navier–Stokes equation with the no-slip boundary condition.

Fig. 4. The Sierpinski carpet generated at different levels of recursion. White regions represent the solid, while the gas can flow through the black regions.

Thus we have U3 = −(δ/2)(x2
1 −1/4), and κ = 1/12; this permeability is also known as the “intrinsic” or “liquid” permeabil-

ity. The apparent gas permeability is always larger than the intrinsic permeability, and increases with 1/δ (or the Knudsen 
number).

Figure 3 shows the apparent gas permeability obtained for these different spatial resolutions over a wide range of the 
rarefaction parameter. It is clear that the SIS, even with a coarse spatial resolution, can yield good results. This proves that 
the SIS is asymptotic-preserving into the Navier–Stokes regime. The CIS results, however, have larger errors at large values 
of δ. For instance, when δ = 150, the non-accelerated scheme underpredicts the apparent gas permeability by about 12.5%. 
This error continues to increases with δ: we have tested the BGK model for δ = 104 and found that the relative error is 
about 62.5% [43].

3. SIS in multiscale problems

We now investigate the performance of the SIS in more complex geometries, where the problems are multiscale in the 
sense that the rarefaction parameter varies by several orders of magnitude due to different characteristic flow length scales, 
e.g. flow in a fractal geometry.

3.1. Rarefied gas flow through the Sierpinski carpet

We first consider the gas flow through a two-dimensional cross section described by the Sierpinski carpet, which can be 
generated through recursion. Beginning with a square, the square is cut into 9 congruent subsquares in a 3 × 3 grid, and 
the central subsquare is removed. The same procedure is then applied recursively to the remaining 8 subsquares. Resulting 
geometries after several levels of recursion are presented in Fig. 4.

Due to the symmetry, the one quarter of the level 1, 2, and 3 Sierpinski carpets are divided into 60 × 60, 90 × 90, 
and 135 × 135 uniform cells, respectively. The molecular velocity space is represented by 32 × 32 × 12 discrete grids. We 
find that the iteration number, using N = 1.5 in Eq. (30) for a hard-sphere gas, is always less than 55 for each rarefaction 
parameter, when the relative error in the mass flow rate MP between two consecutive iterations is less than 10−5.
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Fig. 5. Velocity contours in the Poiseuille flow of a hard-sphere gas through the Sierpinski carpets generated at different levels of recursion (from the left 
column to the right, the recursion levels are 0, 1, 2, and 3, respectively), when δ = 1 (top row), 10 (middle row), and 100 (bottom row). Due to symmetry, 
only one quarter flow domain is shown. The gas flows into the page.

Figure 5 displays the velocity contours at different geometries and for different rarefaction parameters, where the char-
acteristic flow length � is chosen to be the side length of the largest square. When there is no solid inside the largest 
square (first column in Fig. 5), the maximum velocity is at the center of the domain. When there are some solids inside the 
largest square, and when δ is small, it seems that large flow velocities are located near the central regions. However, when 
δ is large, large flow velocities are localized between the smallest squares that are offset from other larger squares nearby, 
instead of in the central region of the carpets. This may be seen clearly in the flow in the Sierpinski carpet of level 3 (the 
right bottom of Fig. 5).

Figure 6 shows the mass and heat flow rates in the Poiseuille flow of the hard-sphere gas through the Sierpinski carpet. 
The Knudsen minimum in the mass flow rate can be seen, however, the location of the minimum MP shifts towards 
larger values of δ as the recursion level of the Sierpinski carpet increases. This is because, in the calculation of δ according 
to Eq. (12), the characteristic flow length � is chosen to be the side length of the largest square, which is larger than, 
say, the smallest side length of the solids near which the flow velocity is maximum. As the recursion level increases, 
the porosity (the void area fraction) of the Sierpinski carpet decreases, so the flow rates decrease. We also plot in Fig. 6
the thermomolecular pressure difference exponent, which is an important parameter determining the performance of a 
Knudsen pump. The exponent always increases with decreasing δ and approaches the value of 0.5 when δ → 0 if the diffuse 
gas–surface boundary condition is used [40]. This also indicates the correctness of our numerical simulations.

3.2. Rarefied gas flow through random structures

We also consider the gas flow through two-dimensional porous media, where the porosity is 0.6. The first porous 
medium is generated by adding circular solids of different radii randomly to a square. The radius ratio of the largest disc to 
the smallest is 10. The square is then divided into 200 × 200 uniform cells, and the discs are approximated by the “stair-
case”, as visualized in Fig. 7(a). The second porous medium, shown in Fig. 7(b), also consisting of 200 × 200 uniform cells, 
is generated by the quartet structure generation set [44].

Following the numerical simulations, velocity contours are displayed in Fig. 8 for the free molecular and near-continuum 
flow regimes, while the mass and heat flow rates are shown in Fig. 9 from the free molecular to near-continuum flow 
regimes. It is interesting to note that, in the free molecular flow regime, the mass flow rates in the two random porous 
media are nearly the same. However, in the near-continuum regime, the mass flow rate of the porous medium consisting of 
random squares is about twice that in disc medium. This research may find applications in shale gas extraction.

4. A special case: SIS in polar coordinates

The SIS developed above for the LBE works well in Cartesian coordinates, for rarefied gas flows through general cross sec-
tions. For flows through circular cross sections, the use of polar coordinates can reduce the computational cost significantly, 
as previously demonstrated in the SIS for the McCormack kinetic model [22,24]. However, for the LBE, the velocity space 
cannot be represented in polar coordinates as that of the McCormack kinetic model, since the molecular velocity along the 
flow direction cannot be integrated due to the nonlinear structure of the Boltzmann equation. Therefore, the SIS for the 
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Fig. 6. Mass flow rate MP , heat flow rate QP , and the thermomolecular pressure difference exponent −QP /MP in the Poiseuille flow of a hard-sphere 
gas through the Sierpinski carpets. Circles, squares, triangles, and pentagrams represent the results for the Sierpinski carpets generated at recursion level 0, 
1, 2, and 3, respectively.

Fig. 7. Porous media with a porosity of 0.6, consisting of (a) discs of random position and radius, and (b) islands of different size and shape composed of 
multiple small squares. White regions represent the solid, while the gas can flow through the black regions.

LBE will be developed in polar coordinates for spatial variables, while the three-dimensional molecular velocity space is 
represented by cylindrical coordinates.

We consider Poiseuille flow along a pipe as an example, where the axis of the pipe is along the x3 direction, and its 
cross section is located in the x1–x2 plane. The spatial coordinates are normalized by the radius of the tube. Introducing 
the transformation x1 = r cos θ , x2 = r sin θ , v1 = vr cos θ , v2 = vr sin θ , and defining the VDF h = h(r, θ, vr, v3) in cylindrical 
(molecular velocity)-polar (space) coordinates vr ∈ [0, +∞), θ ∈ [0, 2π ], vz ∈ (−∞, ∞), and r ∈ [0, 1], the LBE can be written 
as:

v1
∂h − v2 ∂h = L(h, feq) + v3 feq. (35)

∂r r ∂θ
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Fig. 8. Velocity contours in the Poiseuille flow of a hard-sphere gas through the two random porous media in Fig. 7, when δ = 0.01 (left column) and 300 
(right column). The gas flows into the page.

Fig. 9. Mass flow rate MP , heat flow rate QP , and the thermomolecular pressure difference exponent −QP /MP in the Poiseuille flow of a hard-sphere 
gas through the porous media of Fig. 7 consisting of random discs (circles) and islands (squares).
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Table 4
Mass and heat flow rates in Poiseuille flow of hard-sphere and Maxwell molecules along a tube of circular cross section, as well as the number of iterations 
(Itr) to reach the convergence criterion ε = 10−10 in the SIS. We choose N = 1 in Eq. (40).

δ Hard-sphere molecules Maxwell molecules

Itr MP −QP Itr MP −QP

0.0 3 0.752 0.376 3 0.752 0.376
0.01 6 0.736 0.362 7 0.731 0.355
0.1 11 0.699 0.318 15 0.693 0.307
0.5 24 0.691 0.247 34 0.692 0.244
1 33 0.724 0.202 48 0.732 0.205
5 46 1.160 0.082 62 1.179 0.091
10 45 1.766 0.046 60 1.786 0.052
20 49 3.004 0.024 65 3.024 0.028
30 47 4.247 0.017 63 4.269 0.019
50 45 6.745 0.010 60 6.765 0.012
100 42 12.99 0.005 56 13.01 0.006

To construct the SIS in polar coordinates, a diffusion-type equation for the flow velocity U3(r) should be derived. Since 
the Laplace operator ∂2U3/∂x2

1 +∂2U3/∂x2
2 in Eq. (22) can be rewritten as 1

r
∂
∂r

(
r ∂U3

∂r

)
, our goal is to construct the diffusion-

type equation in the following form:

1

r

∂

∂r

(
r
∂U3

∂r

)
= −Nδ + high-order terms, (36)

by taking the velocity moment of the LBE (35).
Multiplying Eq. (35) by 2v3 and integrating over the molecular velocity space, we obtain the equation for the shear 

stress Prz = ´
2v3 v1hdv = ´

2v3 v2
r cos θhdvrdv3dθ as

1

r

∂

∂r
(r Prz) = 1. (37)

Multiplying Eq. (35) by v3 v1, penalizing the linearized Boltzmann collision operator in the form of Eq. (30), and inte-
grating over the molecular velocity space, we obtain

∂

∂r

ˆ
v3 v2

1hdv + 1

r

ˆ
v3(v2

1 − v2
2)hdv = − NδPrz

2
+
ˆ

v3 v1(L − N LBG K )dv, (38)

which is simplified, with the help of Eq. (37), into

1

r

∂

∂r

[
r

∂

∂r

ˆ
2v3v2

1hdv +
ˆ

2v3(v2
1 − v2

2)hdv − r

ˆ
2v3v1(L − N LBG K )dv

]
= −Nδ. (39)

If we express 
´

2v3 v2
1hdv = ´

v3(2v2
1 −1)hdv +U3, the diffusion-type equation in the form of Eq. (36) can be derived. But 

for practical numerical calculations, the following first-order ordinary differential equation for the flow velocity is desirable:

∂U3

∂r
= − Nδr

2
− ∂

∂r

ˆ
v3(2v2

1 − 1)hdv − 1

r

ˆ
2v3(v2

1 − v2
2)hdv +

ˆ
2v3v1(L − N LBG K )dv. (40)

In the numerical simulation, the spatial coordinate r is discretized into 150 nonuniform points, with most of the points 
located near the pipe surface r = 1. Due to symmetry, the truncated velocity vr ∈ (0, 4) is discretized into 64 nonuniform 
points, with most of the points located near vr = 0, while θ ∈ [0, π ] and v3 ∈ (0, 6) are discretized into 40 and 12 uniform 
points, respectively. The linearized Boltzmann collision operator is approximated by the fast spectral method: first, the 
spectrum of the VDF is calculated by Fourier transform from the cylindrical molecular velocity space to the Cartesian 
frequency space. Second, the fast spectral method [28] is applied to find the spectrum of the linearized Boltzmann collision 
operator in the Cartesian coordinate. Finally, the inverse Fourier transform is used to find the collision operator in the 
cylindrical space. The SIS in polar coordinate is implemented in the following three steps: first, as usual, Eq. (35) is solved by 
the implicit iterative scheme, with the spatial derivatives being approximated by the second-order upwind finite difference. 
Then, Eq. (40), which is used to expedite convergence to the steady-state solution, is also solved using the second-order 
upwind finite difference, where the boundary condition of U3(r) at r = 1 is calculated from the VDF obtained in the first 
step. Finally, having obtained U3(r) from Eq. (40), a correction in the VDF is performed, see Eq. (24).

Our numerical results for mass and heat flow rates in Poiseuille flow of a hard-sphere gas through a pipe are summarized 
in Table 4. It can be seen that, as for rarefied gas flows between two parallel plates and in rectangular cross sections, the 
SIS in the polar coordinates is also very efficient.
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5. SIS for the LBE for gas mixtures

In this section we develop a SIS for the LBE for binary gas mixtures. For simplicity, only Poiseuille flow is considered, 
but the method can be generalized to flows driven by temperature and concentration gradients.

Let f A and f B be, respectively, the VDFs of gas components A and B with molecular masses mA and mB , and molar 
fractions χA and χB = 1 − χA . Introducing the equilibrium VDF (in which the velocity is normalized by the most probable 
speed vmA = √

2kB T0/mA of component A [35]):

fα,eq(v) = χα

(
mα

πmA

)3/2

exp

(
−mα |v|2

2mA

)
, α = A or B, (41)

and expressing the VDF in the form fα = fα,eq + hα , where hα are perturbed VDFs satisfying |hα/ fα,eq| � 1, the LBE for hα

is

v1
∂hα

∂x1
+ v2

∂hα

∂x2
= Lα + Sα, (42)

with the linearized Boltzmann collision operators Lα = ∑
β=1,2 Q αβ( fα,eq, hβ) + Q αβ(hα, fβ,eq), where the details of Q αβ

can be found in Ref. [35]. The source term for Poiseuille flow is

Sα = −X P v3 fα,eq, (43)

and again we take X P = −1.
When the perturbed VDFs are known, the flow velocity normalized by vmA is calculated as Uα = ´

hα v3dv/χα , shear 
stresses normalized by the total gas pressure p0 are Pα13 = 2mα

´
hα v1 v3dv/mA and Pα23 = 2mα

´
hα v2 v3dv/mA , and the 

heat flux normalized by p0 vmA is qα = ´ (
mα |v|2/mA − 5/2

)
v3hdv. The dimensionless mass flow rate M and heat flow 

rate Q, normalized by the most probable speed of the gas mixture, are calculated as

Mα = 1

A

√
m

mA

¨
Uαdx1dx2,

Qα = 1

A

√
m

mA

¨
qαdx1dx2,

(44)

where m = χAmA + (1 − χA)mB is the average molecular mass of the mixture.

5.1. The synthetic scheme for a gas mixture

As emphasized above, the relation ∂ P13/∂x1 + ∂ P23/∂x2 = 1 is important in developing the SIS. For binary mixtures, 
this relation still holds, but now shear stresses are replaced by mixture shear stresses, i.e. P13 = P A13 + P B13 and P23 =
P A23 + P B23. This poses an additional difficulty.

Following the basic steps in developing the synthetic equation, we obtain the following two equations for the flow 
velocity of each component:

χα

(
∂2Uα

∂x2
1

+ ∂2Uα

∂x2
2

)
= 2

∂

∂x1

ˆ
v1 v3Lαdv + 2

∂

∂x2

ˆ
v2 v3Lαdv

− 1

4

(
∂2 F α

2,0,1

∂x2
1

+ 2
∂2 F α

1,1,1

∂x1∂x2
+ ∂2 F α

0,2,1

∂x2
2

)
, (45)

where F α
m,n,l = ´

hα Hm(v1)Hn(v2)Hl(v3)dv.
To obtain diffusion-type equations which recover the Stokes equation (an important step, guaranteeing fast convergence) 

in the hydrodynamic regime, we rewrite the linearized collision operator as2:

Lα = (Lα + Nαδhα) − Nαδhα, (46)

where Nα are two constants, and let 2 ́ v1 v3Lαdv = ´
v1 v3(Lα + Nαδhα)dv − NαδmA Pα13/mα and 2 ́ v2 v3Lαdv =´

v2 v3(Lα + Nαδhα)dv − NαδmA Pα23/mα . Then, for component B, Eq. (45) is transformed to

2 This is because the linearized Boltzmann collision operator for single-species gases can also be penalized in the form L = (L + Nδh) − Nδh, instead of 
the form given in Eq. (30). The virtue of Eq. (46) is that the resulting diffusion-type equations are very simple (compared to those in Refs. [37,45] for the 
McCormack kinetic model), but without any loss of efficiency of the SIS.
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Fig. 10. Eigenvalue ω versus the inverse rarefaction parameter 1/δ for the SIS (circles) and the CIS (triangles) for the LBE of an equimolar Ne–Ar mixture.
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(
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2
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∂x1

ˆ
v1 v3(LB − NBδ f B)dv + 2

∂

∂x2

ˆ
v2 v3(LB − NBδ f B)dv, (47)

while for component A, by using the relation ∂ P13/∂x1 + ∂ P23/∂x2 = 1 with P13 = P A13 + P B13 and P23 = P A23 + P B23, 
Eq. (45) is transformed to

χA

(
∂2U A

∂x2
1

+ ∂2U A

∂x2
2

)
= N Aδ

(
∂ P B13

∂x1
+ ∂ P B23

∂x2
− 1

)
− 1

4

(
∂2 F A

2,0,1

∂x2
1

+ 2
∂2 F A

1,1,1

∂x1∂x2
+ ∂2 F A

0,2,1

∂x2
2

)

+ 2
∂

∂x1

ˆ
v1v3(L A − N Aδ f A)dv + 2

∂

∂x2

ˆ
v2 v3(L A − N Aδ f A)dv. (48)

We therefore propose the SIS for the LBE for binary gas mixtures: while the VDFs in Eq. (42) are first solved by the 
CIS [35], flow velocities are updated according to diffusion-type equations (47) and (48). Then the VDFs are corrected in a 
way similar to Eq. (24). Note that the fastest convergence is achieved when

Nα =
´

να,eq(v) fα,eq(v)dv

δχα
, (49)

where να,eq is the equilibrium collision frequency of the α-component.
The present SIS is readily generalized to multiple-species gas mixtures. Suppose there are j gas components; for the 

velocity of the first component, the term ∂ P B13/∂x1 + ∂ P B23/∂x2 in the diffusion-type equation (48) can be replace by ∑ j
i=2(∂ Pi13/∂x1 + ∂ Pi23/∂x2), while the diffusion-type equations for the flow velocities of the other components remain 

the same as Eq. (47), i.e. by replacing B with the component index i. This method can also be applied to the McCormack 
kinetic equation [25] for multiple gas mixture, by simply replacing Lα in Eqs. (47) and (48) with that in the McCormack 
model; the resulting diffusion-type equations will be much simpler than those in Refs. [37,45].

5.2. Convergence analysis

To show the efficiency of the proposed SIS for binary gas mixtures, we calculate the eigenvalue of the iteration as 
a function of the inverse rarefaction parameter. The numerical procedure is essentially the same as that in Sec. 2.3 for 
single-species gases. Fig. 10 shows the eigenvalue of both the SIS and CIS for an equimolar Ne–Ar mixture, where Ne and 
Ar are treated as hard-sphere molecules with a molecular diameter ratio of 0.711. It is clear that the SIS is superior to the 
CIS at large values of the rarefaction parameter. Also, when compared to the SIS for a single-species hard-sphere gas, the 
synthetic scheme for a binary gas mixture has roughly the same maximum eigenvalue, i.e. ω � 0.6. So it is expected that 
the synthetic scheme for a binary gas mixture will be as efficient as that for a single-species gas. It is also interesting to 
note that at small values of δ the eigenvalue of the SIS is slightly higher than that of the CIS; the reason for this is not clear. 
However, this does not affect the efficiency of the SIS because at small values of δ both the SIS and CIS converge rapidly, 
i.e. within a small number of iterations.

5.3. Numerical simulations of Poiseuille flow

Following the convergence analysis above, numerical simulations are now conducted for the Poiseuille flow of a Ne–Ar 
mixture between two parallel plates. First, the hard-sphere molecular potential is considered. Table 5 shows the mass and 
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Table 5
Mass and heat flow rates in Poiseuille flow of Ne–Ar gas mixtures between two parallel plates, as well as the number of iterations (Itr) to reach the 
convergence criterion ε = 10−10 in the SIS. The LBE with the hard-sphere model is used.

δ χNe = 0.1 χNe = 0.5 χNe = 0.9

Itr MNe MAr − QNe
χNe

−QAr
χAr

Itr MNe MAr −QNe
χNe

−QAr
χAr

Itr MNe MAr −QNe
χNe

−QAr
χAr

0.01 9 2.131 1.416 0.999 0.639 9 1.858 1.227 0.861 0.544 9 1.547 1.016 0.705 0.440
0.05 12 1.593 1.071 0.720 0.459 13 1.393 0.936 0.619 0.391 13 1.167 0.787 0.506 0.316
0.1 15 1.386 0.951 0.607 0.391 15 1.218 0.840 0.522 0.334 16 1.030 0.717 0.428 0.272
0.5 31 1.005 0.766 0.372 0.251 32 0.912 0.709 0.323 0.218 32 0.808 0.647 0.269 0.180
1 38 0.909 0.744 0.284 0.196 38 0.846 0.707 0.248 0.170 35 0.773 0.666 0.208 0.141
2 47 0.879 0.776 0.204 0.142 47 0.841 0.756 0.179 0.123 43 0.794 0.730 0.151 0.102
5 52 1.016 0.968 0.115 0.080 48 1.002 0.964 0.101 0.068 54 0.977 0.949 0.085 0.056
10 51 1.371 1.346 0.067 0.045 47 1.367 1.348 0.058 0.039 62 1.352 1.337 0.049 0.031
20 51 2.153 2.141 0.036 0.024 46 2.155 2.145 0.031 0.021 84 2.145 2.137 0.026 0.017
30 50 2.955 2.946 0.024 0.017 45 2.958 2.951 0.021 0.014 89 2.950 2.943 0.018 0.012
50 49 4.570 4.565 0.015 0.010 45 4.574 4.569 0.013 0.009 94 4.568 4.562 0.011 0.007
100 49 8.624 8.620 0.008 0.006 44 8.625 8.622 0.007 0.005 98 8.623 8.614 0.007 0.004

Fig. 11. Velocity (top row) and heat flux (bottom row) profiles in the Poiseuille flow of an equimolar Ne–Ar mixture between two parallel plates, where 
δ = 0.1, 1, and 10 in the left, middle, and right columns, respectively. Triangles and circles are the profiles of Ne and Ar, respectively, obtained from the 
LBE with the hard-sphere model, while solid and dashed lines are the corresponding profiles using the Lennard–Jones potential.

heat flow rates of each component over a wide range of gas rarefaction, for a molar fraction of Ne of 0.1, 0.5, and 0.9. From 
this table we see that the SIS is efficient, since convergence is reached within 100 iterations when Nα = 1; when using 
Nα = 1.5 in Eqs. (47) and (48), converged solutions can be obtained within 50 iterations. Such an efficient method enables 
the study of the flow dynamics over the whole range of gas rarefaction.

In the free molecular and transition regimes, the mass flow rate of the lighter species is always higher than that of the 
heavier species; however, in the near-continuum regime the mass flow rates are the same for both gas components. When 
compared to the results in Table 1 we see that the difference in the mass flow rates is within 1% in the near-continuum 
regime. A comparison of velocity and heat flux profiles in different flow regimes is presented in Fig. 11, which shows 
that the difference between the velocity profiles of each component is reduced as the rarefaction parameter increases. 
As δ increases, the difference between the heat fluxes further normalized by the molar fraction of each component also 
decreases, but in the near-continuum limit the heat flux of Ne is roughly 

√
2 times that of Ar, while the difference in the 

mass flow rate goes to zero.
We have also simulated for the first time the Ne–Ar mixture flow based on the LBE for Lennard–Jones potentials, where 

the fast spectral approximation of the Boltzmann collision operator is described in Ref. [30]. The influence of the molecular 
model on the velocity and the heat flux profiles is shown in Fig. 11: the hard-sphere model overestimates the velocity and 
the heat flux in the free-molecular regime, but in the transition and near-continuum regimes the differences between the 
two molecular models reduce as δ increases. This is in good agreement with observations of the single-species case [29,30].

Figure 12 shows the mass and heat flow rates as a function of the rarefaction parameter. The two flow rates obtained 
from the LBE with Lennard–Jones potentials are both smaller than that for the hard-sphere model when δ < 1 (e.g. when 
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Fig. 12. A comparison between the Lennard–Jones and hard-sphere potentials: mass flowrate (top) and heat flow rate (bottom) profiles in the Poiseuille 
flow of an equimolar Ne–Ar mixture between two parallel plates.

Table 6
Mass and heat flow rates in Poiseuille flow of an equimolar Ne–Ar gas mixture along channels of rectangular cross section, of aspect ratios one and two, 
as well as the number of iterations (Itr) needed to reach the convergence criterion ε = 10−7 in the SIS. Nα = 1.5 is adopted in Eqs. (47) and (48), and the 
LBE with the hard-sphere model is used.

δ Aspect ratio 1 Aspect ratio 2

Itr MNe MAr −2QNe −2QAr Itr MNe MAr −2QNe −2QAr

0.01 5 0.506 0.358 0.251 0.177 5 0.692 0.490 0.343 0.241
0.05 5 0.493 0.349 0.241 0.167 6 0.669 0.474 0.324 0.224
0.1 6 0.483 0.344 0.232 0.160 7 0.653 0.466 0.309 0.212
0.5 11 0.452 0.338 0.195 0.134 13 0.604 0.459 0.249 0.170
1 13 0.441 0.347 0.170 0.117 16 0.589 0.475 0.210 0.144
2 17 0.442 0.373 0.139 0.096 19 0.597 0.518 0.164 0.112
5 19 0.497 0.459 0.091 0.061 20 0.699 0.659 0.101 0.067
10 19 0.630 0.610 0.057 0.038 21 0.926 0.904 0.060 0.040
20 23 0.928 0.917 0.032 0.021 23 1.417 1.406 0.033 0.022
30 23 1.235 1.228 0.022 0.015 23 1.920 1.913 0.023 0.015
50 25 1.856 1.852 0.014 0.009 25 2.932 2.929 0.014 0.009
100 30 3.416 3.416 0.007 0.005 30 5.474 5.474 0.007 0.005

δ = 0.01, the mass flow rates are about 15% smaller, while the heat flow rates are about 25% smaller). This situation is 
reversed for the mass flow rate, but results for the two different molecular models are nearly indistinguishable when δ > 1.

Finally we calculate the Poiseuille flow of an equimolar Ne–Ar mixture along channels of rectangular cross section, 
based on the hard-sphere model. To the best of our knowledge, the LBE for a gas mixture has not previously been solved 
in a two-dimensional geometry, because of the numerical complexity; we tackle the problem here by using the SIS and 
the fast spectral method [35]. The discretization of the spatial domain for a square cross section is the same as that in 
Sec. 2.4, while for a rectangular cross section of aspect ratio 2 the spatial domain is discretized by 50 × 100 cells, and 
the characteristic length � is chosen to be the shorter side. Table 6 summarizes the LBE solution for the mass and heat 
flow rates in two-dimensional Poiseuille flow over a wide range of the rarefaction parameter. The iterations needed to 
achieve the convergence criterion ε = 10−7 are fewer than 40 when δ ≤ 100, demonstrating again the efficiency of the SIS. 
The normalized mass flow rates of Ne and Ar through the rectangular cross section with aspect ratio 2 are always larger 
than those in the aspect ratio 1 case. However, although the heat flow rates through the rectangular cross section with 
an aspect ratio of 2 are larger than those with the aspect ratio 1 when δ < 20, they are roughly the same for δ ≥ 20. 
Typical velocity and heat flux profiles of the Ne–Ar gas mixture through the square cross section in the free molecular, 
transition, and near-continuum regimes are shown in Fig. 13, and are also compared to those of the single-species gas in 
the same geometry. From this figure we see that the velocity and heat flux of Ne is always larger than that of Ar, while the 
corresponding results for a single-species gas lie between those of Ne and Ar.
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Fig. 13. Velocity (√m/mA U ) and heat flux (√m/mAq) profiles in Poiseuille flow of an equimolar Ne–Ar gas mixture along a channel of square cross section, 
where δ = 0.1, 1, and 10 in the left, middle, and right columns, respectively. The first and second (third and fourth) rows show the velocity (heat flux) 
along the side and the center line of the cross section, respectively. Triangles: Ne, circles: Ar, while solid lines in the first and second (third and fourth) 
rows show the velocity (half heat flux) obtained from the single-species LBE.

6. Conclusions

We have proposed a synthetic iterative scheme to accelerate the convergence of the linearized Boltzmann equation for 
gas flows driven by pressure and temperature gradients in long channels. By penalizing the linearized Boltzmann collision 
operator L into the form L = (L + N LBG K ) − N LBG K or L = (L + Nδh) − Nδh, a diffusion-type equation has been derived for 
the macroscopic flow velocity. The velocity distribution function in the linearized Boltzmann equation was first solved by 
the conventional iterative scheme, where the linearized Boltzmann collision operator was approximated by the fast spectral 
method. Then the flow velocity was obtained by solving the diffusion-type equation, which was used to correct the velocity 
distribution function. In this way the slow convergence of the conventional iterative scheme in the near-continuum flow 
regime has been ameliorated: we found, through the numerical solution of Poiseuille and thermal transpiration flows, that 
the synthetic iterative scheme is faster than the conventional scheme by up to several orders of magnitude. More, it has been 
found that the synthetic iterative scheme is asymptotic-preserving into the Navier–Stokes level, so in the near-continuum 
regime the spatial resolution can be much larger than the molecular mean free path. This makes the synthetic iterative 
scheme much more faster and accurate than the conventional one, especially in multiscale problems with a wide variation 
of local flow length.

The tuning parameter N controls the convergence rate of the synthetic iterative scheme. In numerical investigations we 
found that for the linearized Boltzmann equation the fastest convergence is achieved when N roughly equals the ratio of 
the equilibrium collision frequency to the rarefaction parameter. Thus, N varies with the intermolecular potential: for a 
single-species gas, we found that the fastest convergence occurred with N ≈ 1.5 for the hard-sphere gas model and N ≈ 2
for the Maxwell gas model.

We also extended the synthetic iterative scheme to binary gas mixtures, and both the hard-sphere and Lennard–Jones in-
termolecular potentials have been considered. As an example, Poiseuille flow of a Ne–Ar mixture was simulated in order to 
test the computational performance as well as the influence of the intermolecular potential. The synthetic iterative scheme 
required only a limited number of iterations over the whole range of gas rarefaction. Based on this efficient scheme, the 
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Poiseuille flow of a Ne–Ar mixture between two parallel plates was simulated for the first time using the realistic Lennard–
Jones potential. We found that the hard-sphere gas model overestimates the mass and heat flow rates when δ < 1. Poiseuille 
flow of a Ne–Ar mixture through two-dimensional rectangular cross sections was also simulated using the linearized Boltz-
mann equation for the first time.

The developed method can also be extended to the efficient calculation of flows of multiple-species gas mixtures. In par-
ticular, our method can be applied to the McCormack model and we believe that the resulting diffusion-type equations for 
the flow velocity of each component will be much simpler than those in Refs. [18,23]. Our synthetic iterative scheme could 
also be applied straightforwardly to other canonical gas flows, such as Couette flow and the flow driven by a concentration 
gradient. However, it requires future work to investigate whether this method can be applied to other gas flow systems 
(such as the cavity flow) or not.
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